Virchows Archiv B

, Volume 63, Issue 1, pp 335–343 | Cite as

Characterization of four new gastric cancer cell lines

  • H. Peter Vollmers
  • Konrad Stulle
  • Jobst Dämmrich
  • Martin Pfaff
  • Th. Papadopoulos
  • Christoph Betz
  • Katharina Saal
  • Hans-Konrad Müller-Hermelink
Article

Summary

Four well differentiated gastric adenocarcinoma cell lines from German patients have been established from primary tumors (St 23132, St 3051) and lymph node metastases (St 2474, St 2957). The tumor cells were isolated by enzymatic or mechanical treatment. All four lines grew as solid tumors in nude mice and formed colonies in soft agar. The doubling time of the cells in culture was 25–32 h. Further characteristics of the lines were a considerable chromosomal aneuploidy, (the chromosomal numbers varying from 30–109 with many numerical and structural abnormalities), a stable keratin expression (Ck 8, 18, 19), the expression and secretion of CEA and CA-19-9 and the overexpression of c-myc. The four stomach cancer cell lines described here are not only a useful addition to the small number of existing lines, but also represent ideal tools for studying tumorigenicity of human stomach cancers in vitro and in vivo.

Key words

Gastric carcinoma cell lines Tumorigenicity Keratin expression c-myc 

Abbreviations

FCS

fetal calf serum

PBS

posphate-buffered saline

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama S, Amo H, Watanabe T, Matsuyama M, Sakamato J, Imaizumi H, Kondo T, Takagi H (1988) Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4. Jpn J of Surg 18:438–446CrossRefGoogle Scholar
  2. Bos JL, Veerian-de Fries M, Marshall CJ, Veeneman GH, Van Boom JH, Vander Eb AJ (1986) A human gastric carcinoma contains a single mutated and an amplified normal allele of the Ki-ras oncogene. Nucl Acids Res 12:1209–1217CrossRefGoogle Scholar
  3. Comings DE, Peters KE (1981) Two-dimensional gel electrophoresis of nuclear particles. Cell Nucleus 9:89–118Google Scholar
  4. Correa P (1985) Clinical implications of recent developments in gastric cancer pathology and epidemiology. Semin Oncol 12:2–10 (1985)PubMedGoogle Scholar
  5. Dippold WG, Klingel R, Kerlin M, Schwaeble M, Meyer zum Büschenfelde KH (1991) Stimulation of pancreas and and gastric cell growth by interleukin 3 and granulocyte-macrophage colony-stimulating factor. Gastroenterology 100:1338–1344PubMedGoogle Scholar
  6. Erisman MD, Rothberg PG, Diehl RE, Morse CC, Spandorfer JM, Astrin SM (1985) Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangements of the gene. Mol Cell Biol 5:1969–1976PubMedGoogle Scholar
  7. Faller G, Vollmers HP, Weiglein I, Pfaff M, Zink C, Marx A, Müller-Hermelink HK (1990) HAB-1, a new heteromyeloma for stable human monoclonal antibody-production. Br J Cancer 62:595–598PubMedGoogle Scholar
  8. Ferti-Passantanopoulou AD, Panani AD, Vlachos JD, Raptis SA (1987) Common cytogenetic findings in gastric cancer. Cancer Genet Cytogenet 24:63–73CrossRefGoogle Scholar
  9. Ferti-Passantanopoulou AD, Panani AD, Raptis S (1988) Cytogenetic study of rectosigmoidal adenocarcinomas. Cancer Genet Cytogenet 34:101–104CrossRefGoogle Scholar
  10. Gown AM, Vogel AM (1982) Monoclonal antibodies to intermediate filament protein of human cells: unique and cross-reacting antibodies. J Cell Biol 95:414–424PubMedCrossRefGoogle Scholar
  11. Hancock K, Tsang VCW (1982) India ink staining of proteins on nitrocellulose paper. Anal Biochem 133:157–162CrossRefGoogle Scholar
  12. Hojo J (1977) Establishment of cultured cell lines of human stomach cancer origin and their morphological characteristics. Niigata Igakusai Zassi 91:737–763Google Scholar
  13. Laboisse CL, Augeron C, Couturier-Turpin MH, Gespach C, Cheret AM, Potet F (1982) Characterization of a new human gastric cancer cell line HGT-1 bearing histamin H2-receptor. Cancer Res 42:1541–1548PubMedGoogle Scholar
  14. Laemmli UK (1978) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  15. Lin CH, Fu ZM, Liu YI, Jang JL, Xu JF, Chen OS, Chen HM (1984) Investigation of SGC-7901 cell line established from human gastric carcinoma cells. Chin Med J 97:831–834PubMedGoogle Scholar
  16. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD (1983) Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196PubMedCrossRefGoogle Scholar
  17. MacDonald JS, Cohn I, Gunderson LL (1985) Cancer of the stomach. In: DeVita VT, Hellmann S, Rosenberg SA (eds). Cancer, principles and practice of oncology. JB Lippincott Co, Philadelphia, pp 659–690Google Scholar
  18. Mettlin C (1988) Epidemiologic studies in gastric adenocarcinoma. In: Douglass HO (ed). Gastric cancer. Churchill Livingstone, New York, pp 1–25Google Scholar
  19. Moll R, Franke WW, Schiller DL (1982) The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24PubMedCrossRefGoogle Scholar
  20. Motoyama T, Hojo H, Watanabe H (1986) Comparison of seven cell lines from human gastric carcinomas. Acta Pathol Jpn. 36:65–83PubMedGoogle Scholar
  21. Müller J, O’Connoer R, Stulle K, Vollmers HP, Müller-Hermelink HK (1988) Charakterisierung von Zellinien menschlicher Magenkarzinome. Verh Dtsch Ges Pathol 72:214–217PubMedGoogle Scholar
  22. Nakasato F, Sakamoto H, Mori M, Hayashi K, Shimosato Y, Nishi M, Takao S, Nakatani K, Terada M, Sugimura T (1984) Amplification of the c-myc oncogene in human stomach cancers. Gann 75:737–742PubMedGoogle Scholar
  23. O’Farrell PH (1975) High-resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedGoogle Scholar
  24. O’Hara B, Oskarsson M, Tainsky M, Blair DG (1986) Mechanism of activation of human ras genes cloned from a gastric adenocarcinoma and a pancreatic carcinoma cell line. Cancer Res 46:4695–4700PubMedGoogle Scholar
  25. Ohuchi N, Horan Hand P, Merlo G, Fujita J, Mariani-Constantini R, Thor A, Nose M, Callahan R, Schlom J (1987) Enhanced expression of c-Ha-ras p21 in human stomach adenocarcinomas defined by immunoassays using monoclonal antibodies and insitu hybridisation. Cancer Res 47:1413–1420PubMedGoogle Scholar
  26. Park JG, Frucht H, LaRocca RV, Bliss DP, Kurita Y, Chen TR, Henslee JG, Trepel JB, Jensen RT, Johnson BE, Bang YJ, Kim JP, Gazdar AF (1990) Characteristics of cell lines established from human gastric carcinoma. Cancer Res 50:2773–2780PubMedGoogle Scholar
  27. Pfaff M, O’Connor R, Vollmers HP, Müller-Hermelink HK (1990) Human monoclonal antibody against a tissue polypeptide antigen-related protein from a patient with a signet-ring cell carcinoma of the stomach. Cancer Res 50:5192–5198PubMedGoogle Scholar
  28. Saal K, Vollmers HP, Höhn H, Müller-Hermelink HK (1988) Cytogenetic studies on human gastric cancers. Cancer Genet Cytogenet 38:74Google Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory PressGoogle Scholar
  30. Shibuya M, Yokota J, Ueyama Y (1985) Amplification and expression of a cellular oncogene (c-myc) in human gastric adenocarcinoma cells. Mol Cell Biol 5:414–418PubMedGoogle Scholar
  31. Tahara E (1990) Growth factor receptors and oncogene in human gastrointestinal carcinomas. Cancer Res Clin Oncol 116:121–131CrossRefGoogle Scholar
  32. Terano A, Nakada R, Mutoh H, Hiraishi H, Ota S, Shiina S, Shimada T, Itoh Y, Kimura K, Shiga J (1991) Characterization of a newly established cell line (JR-ST) derived from human gastric gastric signet ring cell cancer, producing tumor markers. Gastroenterol Jpn 26:7–13PubMedGoogle Scholar
  33. Vollmers HP, Birchmeier W (1983) Monoclonal antibodies inhibit the adhesion of B16 melanoma cells in vitro and block lung metastases in vivo. Proc Natl Acad Sci USA 80:6863–6869PubMedCrossRefGoogle Scholar
  34. Vollmers HP, Birchmeier W (1983) Monoclonal antibodies that prevent adhesion of B16 melanoma cells and reduce metastases in mice: crossreaction with human cells. Proc Natl Acad Sci USA 80:3729–3733PubMedCrossRefGoogle Scholar
  35. Vollmers HP, Imhof B, Wieland I, Birchmeier W (1985) Monoclonal antibodies NORM-1 and NORM-2 induce more normal behaviour in tumor cells in vitro and in vivo. Cell 40:547–557PubMedCrossRefGoogle Scholar
  36. Vollmers HP, O’Connor R, Müller J, Kirchner T, Müller-Hennelink HK (1989) SC-1, a functional human monoclonal antibody against autologous stomach carcinoma cells. Cancer Res 49:2471–2476PubMedGoogle Scholar
  37. Weinstock J, Baldwin GS (1988) Binding of gastrin 17 to human gastric carcinoma cell lines. Cancer Res 48:932–937PubMedGoogle Scholar
  38. Yamamoto T, Ikawa S, Akivagma T, Semba K, Nomura N, Mivajima N, Saito T, Tovoshima K (1986) Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor. Nature 319:230–234PubMedCrossRefGoogle Scholar
  39. Yanagihara K, Sevama T, Tsumurava M, Kamada N, Yokoro K (1991) Establishment and characterization of human signet ring cell gastric carcinoma cell lines with amplification of the c-myc oncogene. Cancer Res 1:381–386Google Scholar
  40. Yoshida K, Takanasha A, Kvo E, Ito M, Niimoto M, Hattori T, Tahara E (1989) Epidermal growth factor induces the expression of its receptor gene in human gastric carcinoma cell line TMK-1. Jpn J Cancer Res 80:743–746PubMedGoogle Scholar
  41. Yoshikawa K, Ueda R, Obata Y, Utsumi KR, Notake K, Takashi T (1986) Human monoclonal antibody reactive to stomach carcinoma produced by mouse-human hybridoma technique. Jpn J Cancer Res 77:1122–1133PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H. Peter Vollmers
    • 1
  • Konrad Stulle
    • 1
  • Jobst Dämmrich
    • 1
  • Martin Pfaff
    • 1
  • Th. Papadopoulos
    • 1
  • Christoph Betz
    • 1
  • Katharina Saal
    • 1
  • Hans-Konrad Müller-Hermelink
    • 1
  1. 1.Institut für PathologieWürzburgGermany

Personalised recommendations