Environmental Health and Preventive Medicine

, Volume 6, Issue 3, pp 177–183 | Cite as

Genetic and environmental factors affecting peak bone mass in premenopausal Japanese women

  • Yoshika Hayakawa
  • Hisako Yanagi
  • Shuichi Hara
  • Hitoshi Amagai
  • Kazue Endo
  • Hideo Hamaguchi
  • Shigeo Tomura
Original Article

Abstract

The purpose of this study was to examine the relationships between peak bone mass and genetic and environmental factors. We measured whole-body bone mineral density (BMD), lumbar spine BMD, and radius BMD with dual-energy X-ray absorptiometry (DXA) and analyzed eight genetic factors: vitamin D receptor (VDR)-3′, VDR-5′, estrogen receptor (ER), calcitonin receptor (CTR), parathyroid hormone (PTH), osteocalcin (OC), apolipoprotein E (ApoE), and fatty acid binding protein 2 (FABP2) allelic polymorphisms using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs). We also surveyed menstrual history, food intake, and history of physical activity using questionnaires.

After adjusting for age, body mass index (BMI), current smoking status, current Ca intake, alcohol intake, menoxenia, and physical activity, the mean BMD in subjects with the HH/Hh genotype was significantly higher than that of subjects with the hh genotype for whole-body BMD (mean±SD, 1.20±0.10 vs. 1.18±0.09 g/cm2; HH/Hh vs. hh, p=0.04) and at lumbar spine BMD (mean±SD, 1.18±0.14 vs. 1.14±0.12 g/cm2; HH/Hh vs. hh, p=0.02) in OC allelic polymorphism. Furthermore, the results of multiple regression analyses taking the 8 genetic factors plus the 7 environmental factors listed above into account showed that the strongest factor contributing to BMD was BMI at any site (whole-body and lumbar BMD p<0.0001, radius BMD p=0.0029). In addition, OC polymorphism (p=0.0099), physical activity (p=0.0245), menoxenia (p=0.0384), and PTH polymorphism (p=0.0425) were independent determinants for whole-body BMD, and OC polymorphism (p=0.0137) and physical activity (p=0.0421) were independent determinants for lumbar BMD and radius BMD, respectively.

Key words

body mass index menoxenia osteocalcin gene peak bone mass physical activity polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Riggs BL, Melton III LJ. Involutional osteoporosis. N. Engl. J. Med., 1986; 314: 1676–1686.PubMedGoogle Scholar
  2. 2).
    Yamagata Z, Miyamura T, Iijima S, Asaka A, Sasaki M, Kato J, Koizumi K. Vitamin D receptor gene polymorphism and bone mineral density in healthy Japanese women. Lancet 1994; 344: 1027.PubMedCrossRefGoogle Scholar
  3. 3).
    Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J. Bone Miner. Res., 1996; 11: 1850–1855.PubMedGoogle Scholar
  4. 4).
    Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J. Bone Miner. Res., 1996; 11: 306–311.PubMedCrossRefGoogle Scholar
  5. 5).
    Masi L, Becherini L, Gennari L, Colli E, Mansani R, Falchetti A, Cepollaro C, Gonnelli S, Tanini A, Brandi ML. Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochem. Biophys. Res. Commun. 1998; 245: 622–626.PubMedCrossRefGoogle Scholar
  6. 6).
    Hosoi T, Miyao M, Inoue S, Hoshino S, Shiraki M, Orimo H, Ouchi Y. Association study of parathyroid hormone gene polymorphism and bone mineral density in Japanese postmenopausal women. Calcif. Tissue Int. 1999; 64: 205–208.PubMedCrossRefGoogle Scholar
  7. 7).
    Dohi Y, Iki M, Ohgushi H, Gojo S, Tabata S, Kajita E, Nishino H Yonemasu K. A novel polymorphism in the promoter region for the human osteocalcin gene: The possibility of a correlation with bone mineral density in postmenopausal Japanese women. J. Bone Miner. Res. 1998; 13: 1633–1639.PubMedCrossRefGoogle Scholar
  8. 8).
    Shiraki M, Shiraki Y, Aoki C, Hosoi T, Ineue S, Kaneki M, Ouchi Y. Association of Bone Mineral Density with Apolipoprotein E Phenotype. J. Bone Miner Res. 1997; 12: 1438–1445.PubMedCrossRefGoogle Scholar
  9. 9).
    Miyao M, Hosoi T, Inoue S, Hoshino S, Shiraki M, Orimo H, Ouchi Y. Polymorphism of insulin-like growth factor I gene and bone mineral density. Calcif. Tissue. Int. 1998; 63: 306–311.PubMedCrossRefGoogle Scholar
  10. 10).
    Yamada Y, Hosoi T, Makimoto F, Tanaka H, Seino Y, Ikeda K. Transforming growth factor beta-1 gene polymorphism and bone mineral density in Japanese adolescents. Am. J. Med. 1999; 106: 477–479.PubMedCrossRefGoogle Scholar
  11. 11).
    Keen RW, Woodford Richens KL, Grant SF, Ralston SH, Lanchbury JS, Spector TD. Association of polymorphism at the type I collagen (COL1A1) Iocus with reduced bone mineral density, increased fracture risk, and increased collagen turnover. Arthritis Rheum. 1999; 42: 285–290.PubMedCrossRefGoogle Scholar
  12. 12).
    Murray RE, McGuigan F, Grant SF, Reid DM, Ralston SH. Polymorphisms of the interleukin-6 gene are associated with bone mineral density. Bone 1997; 21: 89–92.PubMedCrossRefGoogle Scholar
  13. 13).
    Tsuji S, Munkhbat B, Hagihara M, Tsuritani I, Abe H, Tsuji K. HLA-A*24-B*07-DRB1*01 haplotype implicated with genetic disposition of peak bone mass in healthy young Japanese women. Hum. Immunol. 1998; 59: 243–249.PubMedCrossRefGoogle Scholar
  14. 14).
    Ogawa S, Urano T, Hosoi T, Miyao M, Hoshino S, Fujita M, Shiraki M, Orimo H, Ouchi Y, Inoue S. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor γ gene: PPAR γ expression in osteoblasts. Biochem. Biophys. Res. Cummun. 1999; 260: 127–130.CrossRefGoogle Scholar
  15. 15).
    Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of vitamin D receptor alleles. Nature 1994; 367: 284–287.PubMedCrossRefGoogle Scholar
  16. 16).
    Yaich L, Dupont WD, Cavener DR, Parl FF. Analysis of thePvull restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res. 1992; 52: 77–83.PubMedGoogle Scholar
  17. 17).
    Nakamura M, Zhang ZQ, Shan L, Hisa T, Sasaki M, Tsukino R. Yokoi T, Kaname A, Kakudo K. Allelic variants of human calcitonin receptor in the Japanese population. Hum. Genet. 1997; 99: 38–41.PubMedCrossRefGoogle Scholar
  18. 18).
    Tsukamoto K, Watanabe T, Matsushima T, Kinoshita M, Kato H, Hashimoto Y, Kurokawa K, Teramoto T. Determination by PCR-RFLP of apo E genotype in a Japanese population. J. Lab. Clin. Med. 1993; 121: 598–602.PubMedGoogle Scholar
  19. 19).
    Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J. Clin. Invest. 1995; 95: 1281–1287.PubMedCrossRefGoogle Scholar
  20. 20).
    Fujita Y, Katsumata K, Unno A, Tokita A. Factors affecting peak bone density in Japanese women. Calcif. Tissue Int. 1999; 64: 107–111.PubMedCrossRefGoogle Scholar
  21. 21).
    Health and Welfare Statistics Association eds. Journal of Health and Welfare Statistics, vol 46 (9): Tokyo; Health and Welfare Statistics Association, 1996.Google Scholar
  22. 22).
    Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J. Bone Miner. Res. 1997; 12: 915–921.PubMedCrossRefGoogle Scholar
  23. 23).
    Lian JB, Friedman PA. The vitamin K-dependent synthesis of γ-carboxyglutamic acid by bone microsomes. J. Biol. Chem. 1978; 253: 6623–6626.PubMedGoogle Scholar
  24. 24).
    Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. J. Clin. Invest 1987; 80: 706–710.PubMedCrossRefGoogle Scholar
  25. 25).
    Hara S, Yanagi H, Amagai H, Endoh K, Tsuchiya S, Tomura S. The effect of physical activity during the teenage years, based on type of sports and duration of exercise, on bone mineral density of young, premenopausal Japanese women. Calcif. Tissiue Int. 2001; 68: 23–30.CrossRefGoogle Scholar
  26. 26).
    Nishimoto SK and Price PA. Secretion of the vitamin K-dependent protein of bone by rat osteosarcoma cells. J. Biol. Chem. 1980; 255: 6579–6583.PubMedGoogle Scholar
  27. 27).
    Gross C, Krishnan AV, Malloy PJ, Eccleshall TR, Zhao X, Feldman D. The vitamin D receptor gene start codon polymorphism: A functional analysis ofFokI Variants. J. Bone Miner. Res. 1998; 13: 1691–1699.PubMedCrossRefGoogle Scholar
  28. 28).
    Yanagi H, Tomura S, Kawanami K, Hosokawa M, Tanaka M, Kobayashi K, Tsuchiya S, Amagai H, Hayashi K, Hamaguchi H. Vitamin D receptor gene polymorphisms are associated with osteoporosis in Japanese women. J. Clin. Endocrinol. Metab. 1996; 81: 4179–4181.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Hygiene 2001

Authors and Affiliations

  • Yoshika Hayakawa
    • 3
  • Hisako Yanagi
    • 3
  • Shuichi Hara
    • 3
  • Hitoshi Amagai
    • 1
  • Kazue Endo
    • 3
  • Hideo Hamaguchi
    • 2
  • Shigeo Tomura
    • 3
  1. 1.Orthopedics, Department of Physical TherapyTsukuba College of TechnologyIbaraki
  2. 2.Institute of Basic Medical ScienceUniversity of TsukubaIbaraki
  3. 3.Institute of Community MedicineUniversity of TsukubaTsukuba-city, IbarakiJapan

Personalised recommendations