Application of specific brain function evaluation by optical topography

  • Akiko Obata
  • Kanehisa Morimoto
  • Tatsuya Takeshita
  • Yuriko Isshiki
  • Masahiro Toda
Short Communication

Abstract

Objectives

To use the evaluation of a specific brain function obtained by optical topography. This system uses a non invasive method to measure brain function unlike other major systems.

Methods

Twelve optical fibers were attached to the subject’s head. Hemodynamic changes in the motor cortex were measured during finger tapping before and after alcohol intake for eachALDH2 genotype.

Results

Different hemodynamic changes in the motor cortex were observed among, theALDH2 genotypes.

Conclusions

Optical topography is a useful tool for evaluating specific brain functions. Further research is needed on the relations between various environmental factors and brain functions by optical topography.

Key words

brain function optical topography finger tapping alcohol ALDH2 genotypes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med. Phys. 1995; 22: 1997–2005.PubMedCrossRefGoogle Scholar
  2. (2).
    Watanabe E, Yamashita Y, Maki A, Ito Y, Koizumi H. Noninvasive functional mapping with multi-channel near infrared spectroscopic topography in humans. Neurosci. Lett. 1996; 205: 41–44.PubMedCrossRefGoogle Scholar
  3. (3).
    Watanabe E, Maki A, Kawaguchi F, Takashiro K, Yamashita Y, Koizumi H, Mayanagi Y. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci. Lett. 1998; 256: 49–52.PubMedCrossRefGoogle Scholar
  4. (4).
    Sato H, Takeuchi T, Sakai KL. Temporal cortex activation during speech recognition: an optical topography study. Cognition. 1999; 73: B55-B66.PubMedCrossRefGoogle Scholar
  5. (5).
    Koizumi H, Yamashita Y, Maki A, Yamamoto T, Ito Y, Itagak H, Kennan R. Higher-order brain function analysis by transcranial dynamic near-infrared spectroscopy imaging. J. Biomed. Opt. 1999; 4: 403–413.CrossRefGoogle Scholar
  6. (6).
    Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001; 14: 1186–1192.PubMedCrossRefGoogle Scholar
  7. (7).
    Takeshita T, Morimoto K, Mao XQ, Hashimoto T, Furuyama J. Phenotypic differences in low Km aldehyde dehydrogenase in Japanese workers. Lancet. 1993; 341: 837–838.PubMedCrossRefGoogle Scholar
  8. (8).
    Harada S, Agarwal DP, Goedde HW. Isozymes of alcohol dehydrogenase and aldehyde dehydrogenase in Japanese and their role in alcohol sensitivity. Adv. Exp. Med. Biol. 1980; 132: 31–39.PubMedGoogle Scholar
  9. (9).
    Mizoi Y, Tatsuno Y, Adachi J, Kogame M, Fukunaga T, Fujiwara S, Hishida S, Ijiri I. Alcohol sensitivity related to polymorphism of alcohol-metabolizing enzymes in Japanese. Pharmacol. Biochem. Behav. 1983; 18: 127–133.PubMedCrossRefGoogle Scholar
  10. (10).
    Wall TL, Thomasson HR, Schuckit MA, Ehlers CL. Subjective Feelings of Alcohol Intoxication in Asians with Genetic Variantions of ALDH2 Alleles. Alcohol Clin. Exp. Res. 1992; 16: 991–995.PubMedCrossRefGoogle Scholar
  11. (11).
    Wall TL, Gallen CC, Ehlers CL. Effects of Alcohol on the EEG in Asian Men with genetic variations of ALDH2. Biol. Psychiatry. 1993; 34: 91–99.PubMedCrossRefGoogle Scholar
  12. (12).
    Wall TL, Ehlers CL. Acute effects of, alcohol on P300 in Asians with different ALDH2 genotypes. Alcohol Clin. Exp. Res. 1995; 19; 617–622.PubMedCrossRefGoogle Scholar
  13. (13).
    Nishimura FT, Fukunaga T, Nishijo H, Ono T, Kajiura And H, Yokomukai Y. Electroencephalogram spectral characteristics after alcohol ingestion in Japanese men with aldehyde dehydrogenase-2 genetic variations: comparison with peripheral changes. Alcohol Clin. Exp. Res. 2001; 25: 1030–1036.PubMedCrossRefGoogle Scholar
  14. (14).
    Kahkonen S, Kesaniemi M, Nikouline VV, Karhu J, Ollikainen M, Holi M, Ilmoniemi RJ. Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage. 2001; 14: 322–328.PubMedCrossRefGoogle Scholar
  15. (15).
    Clarici A, Fabbro F, Bava A. Effects of moderate doses of ethyl alcohol on cerebral lateralization of, language and on hand movements. I: A dual-task paradigm study. Boll. Soc. Ital. Biol. Sper. 1995; 7–8: 213–220.Google Scholar
  16. (16).
    Valeriote C, Tong JE, Durding B. Ethanol, tabacco and laterality effects on simple and complex motor performance. J. stud. Alcohol. 1979; 40: 823–830.PubMedGoogle Scholar
  17. (17).
    Lindenschmidt R, Brown D, Cerimele B, Walle T, Forney RB. Combined effects of propranolol and ethanol on human psychomotor performance. Toxicol. Appl. Pharmacol. 1983; 67: 117–121.PubMedCrossRefGoogle Scholar
  18. (18).
    Judd LL, Hubbard RB, Huey LY, Attewell PA, Janowsky DS, Takahashi KI. Lithium carbonate and ethanol induced “highs” in normal subjects. Arch. Gen. Psychiatry. 1977; 34: 463–467.PubMedGoogle Scholar
  19. (19).
    Schuckit MA. Subjective responses to alcohol in sons of aocoholics and control subjects. Arch. Gen. Psychiatry. 1984; 41: 879–884.PubMedGoogle Scholar
  20. (20).
    Hirth C, Obrig H, Villringer K, Thiel A, Bernarding J, Muhlnickel W, Flor H, Dirnagl U, Villringer A. Non-invasive functional mapping of the human motor cortex using nearinfrared spectroscopy. Neuroreport. 1996; 7: 1977–1981.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Hygiene 2003

Authors and Affiliations

  • Akiko Obata
    • 1
  • Kanehisa Morimoto
    • 1
  • Tatsuya Takeshita
    • 1
  • Yuriko Isshiki
    • 1
  • Masahiro Toda
    • 1
  1. 1.Department of Social and Environmental MedicineOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations