Advertisement

Economic Botany

, Volume 21, Issue 2, pp 115–127 | Cite as

Distribution of latex in the plant kingdom

  • C. R. Metcalfe
Article

Conclusion

In conclusion it should be remembered that the purpose which latex serves in the metabolism of the plant has not been conclusively established. We must also remind ourselves once more that the term ‘latex’ is used in a very loose sense, and the line of demarcation between latex itself and certain other secreted metabolites is by no means clearly defined. It is commonly held that latex is no more than a waste product of metabolism, but, if this is so, it is all the more surprising that laticifers in some at least of the Papaveraceae contain such specialized chemical substances as alkaloids at a very early stage of their development, as Professor Fairbairn’s valuable work (11) has so clearly shown. The mere fact that the latices of different kinds of plants vary in their microscopical appearance and chemical composition suggests that they may not always have the same metabolic significance. Furthermore, the fact that latex is restricted to a small number of plant families, between many of which there is no evidence of close taxonomic relationship, suggests that the capacity to produce latex has been evolved more than once. To the systematic anatomist it seems that there are many morphological entities in the structure of plants, of which laticifers are hut one example, whose existence provides evidence of important underlying differences in metabolism. We are too apt to assume that the metabolism of all photosynthetic plants is uniform. No doubt a basic uniformity exists, but the restricted occurrence of plants with unusual products of metabolism such as latex shows that there is great scope for the study of comparative physiology and chemotaxonomy in the future.

Keywords

Rubber Bark Economic Botany Vascular Bundle Natural Rubber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addicott, F. T. 1944. A differential stain for rubber in Guayule. Stain Techn.19: 99–102.Google Scholar
  2. 2.
    Artschwager, E. 1943. Contribution to the morphology and anatomy of Gua-yule(Parthenium argentatum). U. S. Dept. Agr., Washington, D.C. Tech. Bull. 842.Google Scholar
  3. 3.
    Ashplant, H. 1928. Investigations intoHevea anatomy. Bull. Rubber Growers Ass.10: 484–490.Google Scholar
  4. 4.
    Bonner, J. & Galston, A. W. 1947. The physiology and biochemistry of rubber formation in plants. Bot. Rev.13: 543–588.CrossRefGoogle Scholar
  5. 5.
    Bouychou, J. G. 1952. The latex forming system and the components of latex by tissue culture. Int. Biochem. Congr., 2e Congr., Paris, p. 316.Google Scholar
  6. 6.
    Cameron, D. 1936. An investigation of the latex systems inEuphorbia marginata, with particular attention to the distribution of latex in the embryo. Trans. & Proc. Bot. Soc. Edinb.32: 187–194.Google Scholar
  7. 7.
    Carlquist, S. 1958. Anatomy of Guayana Mutisieae. II. Mem. N. Y. Bot. Gard.10: 157–184.Google Scholar
  8. 8.
    Cook, F. 1943. Natural rubber. Ann. Rep Smithsonian Inst. 363–411.Google Scholar
  9. 9.
    Dippel, L. 1865. Entstechungder Milchsaftgefäsze und deren Stellung in dem Gefäszbündelsystem der milchenden Gewächase. Rotterdam.Google Scholar
  10. 10.
    Esau, K. 1965. Plant anatomy. 2nd ed. Wiley, New York.Google Scholar
  11. 11.
    Fairbairn, J. W. 1966. The latex ofPapaver somniferum. (Unpublished paper contributed to the symposium of which a summary of the present article formed a part.)Google Scholar
  12. 12.
    Foster, A. S. 1958. Practical plant anatomy. 2nd ed. Van Nostrand. (On pp. 142–150 there are useful practical directions for examining laticifers microscopically.)Google Scholar
  13. 13.
    Frey-Wyssling, A. M. 1931. Étude sur la relation existant entre le diamêtre des tubes à latex et la production du caoutchouc dans l’Heveabrasiliensis. Bull. Econ. Indochine34: 341–374.Google Scholar
  14. 14.
    Gooding, E.G. B. 1952. Studies on tho physiology of latex. III. Effects of various factors on the concentration of latex ofHevea brasiliensis. New Phytol.51(2): 139–152.CrossRefGoogle Scholar
  15. 15.
    Gunnery, H. 1935. Yield prediction in Hevea—a study of sieve-tube structure in relation to latex yield. J. Rubber Res. Inst., Malaya6: 8–20.Google Scholar
  16. 16.
    Hammond, B. L. & Polhamus, L. G. 1965. Research on Guayule(Parthenium argentatum) 1942-1959. U. S. Dept. Agr., Washington, D.C. Tech. Bull. 1327.Google Scholar
  17. 17.
    Hoffman, 1933. Developmental morphology ofAllium Bot. Gaz.95: 279–299.CrossRefGoogle Scholar
  18. 18.
    Kapoor, L.D. & Sharma, M. 1963.Argemone mexicana L. Organography and floral anatomy with reference to the laticiferous system. Phytomorphology13: 465–473.Google Scholar
  19. 19.
    Kaussmann, B. 1963.Pflanzenanatomie. Gustav Fischer Verlag: Jena. (Contains a useful survey on laticiferous elements on pp. 237-247, with bibliography.)Google Scholar
  20. 20.
    Lloyd, F. E. 1911. Guayule (Parthenium argentatum Gray), a rubber plant of the Chihuahuan desert. Carnegie Inst. Wash. Publ. 139, 213 pp.Google Scholar
  21. 21.
    Mahabale, T. S. 1949. The laticiferous system ofRegnellidium diphyllum Lind. Curr. Sci.18: 449–450.Google Scholar
  22. 22.
    Mahlberg, P. G. 1959a. Karyolinesis in the non-articulated laticifers ofNerium oleander L. Phytomorphology9: 110–118.Google Scholar
  23. 23.
    — 1959b. Development of the non-articulated laticifers in proliferated embryosEuphorbia marginata Pursh. Phytomorphology9: 156–162.Google Scholar
  24. 24.
    — 1961. Embryology and histogenesis inNerium oleander II. Origin and development of the non-articulated laticifers. Amer. J. Bot.48: 90–99.CrossRefGoogle Scholar
  25. 25.
    — 1963. Development of non-articulated laticifers in seedling axis ofNerium oleander. Bot. Gaz.124: 224–231.CrossRefGoogle Scholar
  26. 26.
    Mann, L. K. & Stearn, W. T. 1960. Rakkyo or Ch’iao T’au(Allium chinense G. Don, syn.A. Bakeri Regel.) a little known vegetable crop. Econ. Bot.14: 69–83.Google Scholar
  27. 27.
    Metcalfe, R. 1947–48. Lesser rubber plants. Research1: 438–446.Google Scholar
  28. 28.
    —, & Chalk, L. 1950. Anatomy of the Dicotyledons (2 vols.). Clarendon Press, Oxford. (Families in which laticifers are known to occur are listed on pp. 1347 and 1349 respectively, and further particulars are given in the text under the families concerned.)Google Scholar
  29. 29.
    Milanez, F. R. 1949. Segunda nota sôbre os laticíferos. Lillow16: 193–211.Google Scholar
  30. 30.
    — 1952a Sôbre os núcleos dos laticíferos deEuphorbia phosphorea Mart. Rodriguesia15: 163–179.Google Scholar
  31. 31.
    —. 1952b. Ontogênese dos laticíferos do caule deEuphorbia phosphorea Mart. Arq. Jard. Bot. Rio de Janeiro12: 17–35.Google Scholar
  32. 32.
    — 1954a. Origem das ramificações dos laticíferos do caule deEuphorbia phosphorea Mart. Arq. Jard. Bot. Rio de Janeiro13: 95–113.Google Scholar
  33. 33.
    — 1954b. Sobre os laticíferos foliares deFicus retasa. Rodriguesia16– 17: 159–92.Google Scholar
  34. 34.
    — 1960–61. Contribuição ao conhecimento anatmico deCryptostegia grandiflora II. Sôbre os laticíferos da estrutura primária (Asclepiaceae). Rodriguesia23–24: 99–128.Google Scholar
  35. 35.
    —. & Machado, R. D. 1956. Aplicaçäo da microscopía eletrônica do estudo dos laticíferos embrionários deEuphorbia pulcherrima Willd. Rodriguesia18–19: 425–440.Google Scholar
  36. 36.
    — & Neto, H. M. 1956. Origem dos laticíferos do embrião deEuphorbia pulcherrima Willd. Rodriguésia18– 19: 351–395.Google Scholar
  37. 37.
    Rao, A.R. & Malaviya, M. 1964. On the latex-cells and latex ofJatropha. Proc. Ind. Acad. Sci.60B: 95–106.Google Scholar
  38. 38.
    Rendle, A. B. 1889. On the vesicular vessels of the onion. Ann. Bot.3: 169–176.Google Scholar
  39. 39.
    Riches, J. P. & Gooding, E. G. B. 1952. Studies in the physiology of latex. I Latex flow on tapping-theoretical considerations. New Phytol.51: 1–10.CrossRefGoogle Scholar
  40. 40.
    Ross, H. 1908. Der anatomische Bau der mexikanischen Kautschukpflanze “Guayule”,Parthenium argentatum Gray. Ber. Dtsch. Bot. Ges.26A: 248–263. (The earliest account of the structure of the Guayule plant.)Google Scholar
  41. 41.
    Sárkány et al. 1964. Studien über die Feinstruktur der jungen Milchrohren, bzw. des Milchsaftes vonPapaver somniferum L. 3rd Europ. Reg. Conf. Electron Microscopy, 161–162.Google Scholar
  42. 42.
    Sassen, M. M. A. 1965. Breakdown of the plant cell wall during the cell-fusion process. Acta Bot. Néerl.14: 165–196.Google Scholar
  43. 43.
    Schmalhausen, J. 1877. Beiträge zur Kenntnis der Milchsaftbehälter der Pflanzen. Mém. Acad. Imp. Sci. St. Petersburg, ser.7, 24: 1–27. (One of the outstanding classical papers on laticifers.)Google Scholar
  44. 44.
    Scott, D. H. 1882. The development of articulated laticiferous vessels. Quart. J. Micros. Sci.22: 136–153.Google Scholar
  45. 45.
    — 1884. On the laticiferous tissue ofManihot glaziovii (the Ceara Rubber). Quart. J. Micros. Sci.24: 193–203.Google Scholar
  46. 46.
    — 1884. Note on the laticiferous tissue ofHevea spruceana. Quart. J. Micros. Sci.24: 204–6.Google Scholar
  47. 47.
    — 1886 On the occurrence of articulated laticiferous vessels inHevea. J. Linn. Soc. (Bot.)21: 566–573.Google Scholar
  48. 48.
    Siqueira-Jaccoud, R. J. de. 1956. Contribuição para o estudo daEuphorbia brasiliensis Lam. Mem. Inst. Oswaldo Cruz.54: 103–113.CrossRefGoogle Scholar
  49. 49.
    Skutch, A. F. 1927. Anatomy of leaf of banana,Musa sapientum L. var. hort. Gros Michel. Bot. Gaz.84: 337–391.Google Scholar
  50. 50.
    —. 1932. Anatomy of the axis of the banana. Bot. Gaz.93: 233–258.CrossRefGoogle Scholar
  51. 51.
    Snyder, F. W. 1955. Growth of excised tissues from the stem ofCryptostegia grandiflora. Bot. Gaz.117: 147–55.CrossRefGoogle Scholar
  52. 52.
    Solereder, H. 1908. Systematic anatomy of the Dicotyledons. (2 vols.). English edition, translated by Boodle and Fritsch, Oxford. (The important classical papers on the laticifers in Compositae are included in the bibliographies on pp. 468–469 and 962–963 of Solereder’s book.)Google Scholar
  53. 53.
    — & Meyer, F. J. 1928. Systematische Anatomie der Monokotyledonen. Heft 3. Gebrüder Borntraeger: Berlin.Google Scholar
  54. 54.
    Stant, M. Y. 1964. Anatomy of the Alismataceae. J. Linn. Soc. (Bot.)59: 1–42.CrossRefGoogle Scholar
  55. 54a.
    — 1967. Anatomy of the Butomaceae. J. Linn Soc. (Bot)60: 31–60.CrossRefGoogle Scholar
  56. 55.
    Sterling, C. 1959. Callose distribution and wall structure in the laticiferous cells ofAllium cepa. Phyton (Austria)8: 132–135.Google Scholar
  57. 56.
    Tomlinson, P. B. 1959. An anatomical approach to the classification of the Musa-ceae. J. Linn. Soc. (Bot.)55: 779–809.CrossRefGoogle Scholar
  58. 57.
    Van Die, J. 1955. A comparative study of the particle fractions from Apocynaceae latices. Ann. Bogor.2: 1–124.Google Scholar
  59. 58.
    Vreede, M. C. 1949. Topography of the laticiferous system in the genusFicus. Ann. Bot. Gard. Buitenz.51: 125–149.Google Scholar
  60. 59.
    Weiss, F. E. 1892. The caoutchouc-containing cells ofEucommia ulmoides Oliver. Trans. Linn. Soc Lond. II,3: 243–254.Google Scholar
  61. 60.
    Zheng-Hai, Hu. 1963. Studies on the structure and the ontogeny of laticiferous canals ofDecaisnea fargesii Franch. Acta Bot. Sinica11: 129–140.Google Scholar

Copyright information

© The New York Botanical Garden 1967

Authors and Affiliations

  • C. R. Metcalfe
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensKewEngland

Personalised recommendations