Folia Microbiologica

, Volume 25, Issue 6, pp 483–490 | Cite as

The suppressive effect of continuous infusion of bilirubin on the immune response in mice

  • P. Šíma
  • J. Malá
  • I. Miler
  • R. Hodr
  • E. Truxová


Mice (strains Balb/c and A/J) received an intravenous infusion of bilirubin for a 1 d period. The infusion was delivered at various phases of the primary reaction; the degree of the immune response was expressed as the number of antibody-forming cells against sheep erythrocytes. Bilirubin infusion during both the inductive and productive phase of the primary reaction decreased significantly the immune response. We assume that bilirubin influences the differentiation of immunocompetent cells immediately after their contact with the antigen; in addition it acts in the period of the quantitative increase of the number of antibody-producing cells.


Bilirubin Immunocompetent Cell Sheep Erythrocyte Scarlet Fever Primary Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansaldi N., Fiandino G., Ciriotti G.: Changes of the immunoglobulin level in hyperbilirubinemic premature infants.Minerva Pediat.20, 1982 (1968).PubMedGoogle Scholar
  2. Beck K.: Zur Giftigkeit des Bilirubins.Deut.Z.Verdauungs-Stoffwechsel Krankh.30, 47 (1970).Google Scholar
  3. Bernstein J., Landig B.H.: Extraneural lesions associated with neonatal hyperbilirubinemia and kernicterus.Am.J.Pathol.40, 371 (1962).PubMedGoogle Scholar
  4. Bowen W.R., Waters W.J.: Bilirubin encephalopathy. Studies related to the site of inhibitory action of bilirubin on brain metabolism.Am.J.Dis.Child.93, 21 (1957).Google Scholar
  5. Cowger M.L., Igo R.P., Labbe R.F.: The mechanism of bilirubin toxicity studied with purified respiratory enzyme and tissue culture systems.Biochemistry4, 2763 (1965).PubMedCrossRefGoogle Scholar
  6. Cowger M.L.: Mechanisms of bilirubin toxicity on tissue culture cells: factors that affect toxicity, reversibility by albumin and comparison with other respiratory poisons and surfactants.Biochem.Med.5, 1 (1971).PubMedCrossRefGoogle Scholar
  7. Cowger M.L., Mustafa M.G.: Some membrane effects of bilirubin (Abstract).Pediat.Res.5, 419 (1971).Google Scholar
  8. Davies A.J.S., Leuchars E., Vallis V., Koller P.C.: The mitotic response of thymus-derived cells to antigenic stimulus.Transplantation4, 438 (1966).PubMedCrossRefGoogle Scholar
  9. Davies A.J.S.: The thymus and the cellular basis of immunity.Transplant.Rev.1, 43 (1969).PubMedGoogle Scholar
  10. De Ritis F., Paradisi F., Maio G.: The effect of unconjugated bilirubin and some bilirubin precursors on cell culture.Path.Microbiol.37, 37 (1971).Google Scholar
  11. De Sanctis C., Malandra C., Zanetti P., Fabris C., Ponzone A.: Neonatal hyperbilirubinaemia and response of lymphocytes to phytohaemagglutinin.Minerva Pediat.20, 2010 (1968).PubMedGoogle Scholar
  12. Diaz de Castillo E.: Neonatal hyperbilirubinaemia. Its relation to the immunological response capacity of the newborn infant.Gac. Med. Mex.105, 185 (1973).Google Scholar
  13. Eidinger D., Pross H.F.: The immune response to sheep erythrocytes in the mouse. I. A study of the immunological events utilizing the plaque technique.J. Exp. Med.126, 15 (1967).PubMedCrossRefGoogle Scholar
  14. Gerebtzoff A., Lambert P.H., Miescher P.A.: Immunosuppressive agents.Am. Rev. Pharmacol.12, 287 (1972).CrossRefGoogle Scholar
  15. Haddock J.H., Nadler H.L.: Bilirubin toxicity in human cultivated fibroblasts and its modification by light treatment.Proc. Soc. Exp. Biol. (N. Y.),134, 45 (1970).Google Scholar
  16. Hirschhorn K., Hirschhorn R.: Role of lysosomes in the lymphocytes response.Lancet1, 1046 (1965).CrossRefGoogle Scholar
  17. Jerne N.K., Nordin A.A., Henry G.: The agar plaque technique for recognizing antibody-producing cells. p. 109 inCell Bound Antibodies (B. Amos, H. Koprowski eds.), Wistar Institute Press, Philadelphia 1963.Google Scholar
  18. Johnson L., Garcia M.L., Figueroa E., Sarmiento F.: Kernicterus in rats lacking glucuronyl transferase. II. Factors which alter bilirubin concentration and frequency of kernicterus.Am. J. Dis. Child.101, 322 (1961).PubMedGoogle Scholar
  19. Joe M., Teasdale J.M., Miller J.R.: A new mutation causing neonatal jaundice in the house mouse.Can. J. Gener. Cytol.4, 219 (1962).Google Scholar
  20. Josífko M.:Probability and Mathematical Statistics for Biologists. (In Czech) SPN, Prague 1969.Google Scholar
  21. Lemmel E.M., Good R.A.: Continuous long-term intravenous infusion in unrestrained mice-method.J. Lab. Clin. Med.77, 1011 (1971).PubMedGoogle Scholar
  22. Levine P., Pollack W.: Hemolytic disease of the fetus and newborn.Med. Clin. N. Amer.49, 1647 (1965).PubMedGoogle Scholar
  23. Maisels M.J.: Bilirubin: on understanding its metabolism in the newborn infants.Pediat. Clin. N. Amer.19, 447 (1972).PubMedGoogle Scholar
  24. Malloy H.T., Evelyn K.A.: The determination of bilirubin with the photoelectric colorimetr.J. Biol. Chem.119, 481 (1937).Google Scholar
  25. Mason S., Warner N.L.: The immunoglobulin nature of the antigen recognition site on cells mediating transplantation immunity and delayed hypersensitivity.J. Immunol.104, 762 (1970).PubMedGoogle Scholar
  26. Miler I., Vondráček J., Hromádková L.: The bactericidal activity of sera of healthy neonates and of newborns with hyperbilirubinaemia toEscherichia coli.Folia Microbiol.24, 143 (1979).Google Scholar
  27. Mustafa M.G., King T.E.: Binding of bilirubin with lipids. A possible mechanism of its toxic reactions in mitochondria.J. Biol. Chem.245, 1084 (1970).PubMedGoogle Scholar
  28. Nejedlá Z.: The effect of exchange transfusion on the development of immunological factors.Vox Sang.12, 118 (1967).PubMedCrossRefGoogle Scholar
  29. Nejedlá Z.: The development of immunological factors in infants with hyperbilirubinaemia.Pediatrics45, 102 (1970).PubMedGoogle Scholar
  30. Noir B.A., Boveris A., Garaza-Pereira A.M., Stoppani A.: Bilirubin: a multi-site inhibitor of mitochondrial respiration.FEBS Lett.27, 270 (1972).PubMedCrossRefGoogle Scholar
  31. Odell G.B.: Studies in kernicterus. The protein binding of bilirubin.J. Clin. Invest.38, 823 (1959).PubMedCrossRefGoogle Scholar
  32. Odell G.B., Natzschka J.C., Storey M.B.: Bilirubin in the liver and kidney in jaundiced rats.Am. J. Dis. Child.112, 351 (1966).PubMedGoogle Scholar
  33. Paradisi F., Graziano L., De Ritis F.: The action of conjugated bilirubin on some enzyme activities ofin vitro cultured cells.Res. Exp. Med.161, 224 (1973).CrossRefGoogle Scholar
  34. Quastel J.H., Bickis J.J.: Metabolism of normal tissues and neoplasmin vitro.Nature183, 281 (1954).CrossRefGoogle Scholar
  35. Raff M.C., Steinberg M., Taylor R.B.: Immunoglobulin determinants on the surface of mouse lymphoid cells.Nature225, 553 (1970).PubMedCrossRefGoogle Scholar
  36. Rola-Plesczynski M., Hensen S.A., Vincent N.M., Bellanti J.A.: Inhibitory effects of bilirubin on cellular immune responses in man.J. Pediat.86, 690 (1975).CrossRefGoogle Scholar
  37. Rubaltelli F.F., Piovesan A.L., Semenzato C., Barbato A., Ongaro G.: Immune competence assessment in hyperbilirubinemic newborn before and after phototherapy.Helv. Pediat. Acta32, 129 (1977).Google Scholar
  38. Sell S., Asofsky R.: Lymphocytes and immunoglobulins.Progr. Allergy12, 86 (1968).Google Scholar
  39. Schenker S., Mc Candless D.W., Zollman P.E.: Studies of cellular toxicity of unconjugated bilirubin in kernicterus brain.J. Clin. Invest.45 1213 (1966).PubMedCrossRefGoogle Scholar
  40. Schmid R.: Bilirubin metabolism in man.N. Engl. J. Med.287, 703 (1972).PubMedGoogle Scholar
  41. Šidák Z., Vondráček J.: Simple non-parametric test of different position of two populations. (In Czech)Aplikace matematiky2, 215 (1957).Google Scholar
  42. Šterzl J., Mandel L.: Estimation of the inductive phase of antibody formation by plaque technique.Folia Microbiol.9, 173 (1964).CrossRefGoogle Scholar
  43. Šterzl J.: The effect of immunosuppressive drugs at various stages of differentiation of immunologically competent cells, p. 71 inImmunity, Cancer and Chemotherapy (E. Mihich, ed.). Academic Press, New York-London 1967.Google Scholar
  44. Šterzl J.: Studies on differentiation of immunocompetent cells using immunological inhibition.Antibiotics et Chemoterapia15, 135 (1969).Google Scholar
  45. Tannenberg W.J.K.: Induction of 19S antibody synthesis without stimulation of cellular proliferation.Nature214, 293 (1967).PubMedCrossRefGoogle Scholar
  46. Tannenberg W.J.K., Malaviya A.N.: The life cycle of antibody-forming cells. I. The generation time of 19S hemolytic plaque-forming cells during the primary and secondary responses.J. Exp. Med.128, 895 (1968).PubMedCrossRefGoogle Scholar
  47. Thong Y.H., Rencis V.: Bilirubin inhibits hexose-monophosphate shunt activity of phagocytosing neutrophils.Acta Paediat. Scand.66, 757 (1977).PubMedCrossRefGoogle Scholar
  48. Thong Y.H., Ness D., Ferrante A.: Effect of bilirubin on the fungicidal capacity of human neutrophils.Sabouraudia17, 125 (1979).PubMedGoogle Scholar
  49. Xanthou M., Mandyla-Sfagou E., Campbell A.C., Waller C.A., Economo-Mavrou C., Matsaniotis N.: Lymphocyte subpopulations and their functions in the blood of neonates, p. 139 inIntensive Care in the Newborn (L. Stern, B. Friis-Hansen, P. Kilberg (eds), New York-Paris-Barcelona-Milan 1976.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1980

Authors and Affiliations

  • P. Šíma
    • 1
  • J. Malá
    • 1
  • I. Miler
    • 2
  • R. Hodr
    • 2
  • E. Truxová
    • 1
  1. 1.Department of Immunology, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4
  2. 2.Research Institute for the Care of Mother and ChildPrague 4

Personalised recommendations