Science in China Series A: Mathematics

, Volume 43, Issue 4, pp 414–420 | Cite as

Raman scattering of nanocrystalline silicon embedded in SiO2

  • Zhixun MaEmail author
  • Xianbo Liao
  • Guanglin Kong
  • Junhao Chu


Raman scattering of nanocrystalline silicon embedded in SiO2 matrix is systematically investigated. It is found that the Raman spectra can be well fitted by 5 Lorentzian lines in the Raman shift range of 100–600 cm−1. The two-phonon scattering is also observed in the range of 600–1100 cm−1. The experimental results indicate that the silicon crystallites in the films consist of nanocrystalline phase and amorphous phase; both can contribute to the Raman scattering. Besides the red-shift of the first order optical phonon modes with the decreasing size of silicon nanocrystallites, we have also found an enhancement effect on the second order Raman scattering, and the size effect on their Raman shift


nanocrystalline silicon phonon confinement effect Raman scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Temple, P. A., Hathaway, C. E., Multiphonon Raman spectrum of silicon, Phys. Rev. B, 1973, 7(8): 3685.CrossRefGoogle Scholar
  2. 2.
    Yang, M., Huang, D., Hao, P. et al., Study of the Raman peak shift and the linewidth of ligh-emitting porous silicon, J. Appl. Phys., 1994, 75(1): 651.CrossRefGoogle Scholar
  3. 3.
    Richter, H., Wang, Z. P., Ley, L., The one phonon Raman spectrum in mimrystalline silicon, Solid State Commun., 1981, 39: 625.CrossRefGoogle Scholar
  4. 4.
    Compbell, I. H., Fauchet, P.M., The effects of microcrystal size and shape on the one phonon Raman specra of crystalline semiconductors, Solid State Commun., 1986. 58: 739.CrossRefGoogle Scholar
  5. 5.
    Zi, J., Buscher, H., Falter, C. et al., Rarnan shift in Si nanocrystals, Appl. Phys. Lett., 1996, 69(2): 200.CrossRefGoogle Scholar
  6. 6.
    Tanino, H., Kuprin, A., Deai, H. et al., Raman study of free-standing porous silicon, Phys. Rev. B, 1996, 53(4): 1937.CrossRefGoogle Scholar
  7. 7.
    Gregora, I., Champagnon, B., Halimaoui, A., Raman investigation of light-emitting pomus silicon layers: estimate of characteristic crystallite dimensions, J. Appl. Phys., 1994, 75(6): 3034.CrossRefGoogle Scholar
  8. 8.
    Voutsaa, A. T., Hatilis, M. K., Boyce, J. et al., Raman spectmscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition, J. Appl. Phys., 1995, 78(12): 6999.CrossRefGoogle Scholar
  9. 9.
    Sokolov, A. P., Shebanin, A. P., Golikova, O. A., et a1., Structural order in amorphous silicon and its alloys: Raman spectra and optical Gap, J. of Non-Cryst. Solids, 1991, 137&138: 99.CrossRefGoogle Scholar
  10. 10.
    Kamitakahara, W. A., Soukoulis, C. M., Shanks, H. R. et al., Vibrational spectrum of amorphous silicon: experiment and computer simulation, Phys. Rev. B, 1987, 36(12): 6539.CrossRefGoogle Scholar
  11. 11.
    Werntein, B. A., Piermarini, G. J., Raman scattering and phonon dispersion in Si and CaP at very high pressure, Phys. Rev. B, 1975, 12(4): 1172.CrossRefGoogle Scholar
  12. 12.
    Tsang, J. C., Tishler, M. A., Collins, R. T., Raman scattering from H or O terminated pomus Si, Appl. Phys. Lett., 1992, 60(18): 2279.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Zhixun Ma
    • 1
    • 2
    Email author
  • Xianbo Liao
    • 1
  • Guanglin Kong
    • 1
  • Junhao Chu
    • 1
  1. 1.State Key Laboratory for Surface Physics, Institute of Semiconductors, Center for Condensed Matter PhysicsChinese Academy of SciencesBeijingChina
  2. 2.National Laboratoty for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations