American Journal of Potato Research

, Volume 82, Issue 1, pp 1–8 | Cite as

Volatile metabolic profiling for discrimination of potato tubers inoculated with dry and soft rot pathogens

  • L. H. Lui
  • A. Vikram
  • Y. Abu-Nada
  • A. C. KushalappaEmail author
  • G. S. V. Raghavan
  • K. Al-Mughrabi


Volatile metabolites from ‘Russet Burbank’ potatoes inoculated withErwinia carotovora ssp.carotovora (ECC),Erwinia carotovora ssp.atroseptica (ECA), andFusarium sambucinum (FSA) were analyzed by sampling the headspace at 3 and 6 days after inoculation and then using a gas chromatograph/mass spectrometer (GC/MS) to identify the compounds. Non-wounded noninoculated and wounded non-inoculated tubers served as checks. Compounds with an abundance of ≥105 and with frequency of ≥3 out of 20 replicates (10 replicates × 2 incubation times) were subjected to further analysis. A total of 81 volatile metabolites were detected, of which 58 were specific to one or common to a few, but not to all inoculations/diseases. Acetic acid ethenyl ester was unique to ECA, while cyclohexene, diazene, and methoxy-(1,1-dimethyl-2-dihydroxy-ethyl)-amine were unique to ECC, and 2,5-norbornadiene and styrene were unique to FSA. Several metabolites were common only to tubers inoculated with ECC and ECA and were not detected in fungus-inoculated or in control tubers. High abundances of acetone and butane were detected in ECC- and ECA-inoculated tubers, respectively. The possible use of differences in volatile metabolic profiles to discriminate diseases of potato tubers in storage is discussed.

Additional Key Words

metabolomics electronic nose disease detection disease diagnosis postharvest pathology GC/MS organic volatiles Solarium tuberosum 


Los metabolites volátiles de la papa Russet Burbank, inoculados conErwinia carotovora ssp.carotovora (ECC),Erwinia carotovora ssp.atroseptica (ECA)y Fusarium sambucinum (FSA) se analizaron por muestreo del espacio circundante 3 y 6 días después de la inoculación. Para identificar los compuestos se utilizó un cromatógrafo de gas/ espectómetro de masa (GC/MS). Sirvieron como testigos, tubérculos sin herir sin inocular y tubérculos heridos sin inocular. Los compuestos en cantidades ≥105 y con una frecuencia ≥3 de 20 repeticiones (10 repeticiones × 2 periodos de incubación), fueron sujetos a análisis posteriores. Se detectó un total de 81 metabolites volátiles, de los cuales 58 fueron especificos a una o comunes a unas pocas pero no a todas las inoculaciones/enfermedades. El ácido acético etenil ester fue exclusivo de ECA, mientras que el ciclohexeno, diazeno y metoxi-(1,1 dimetil-2-dihidroxi-etil)-amina fueron exclusivos de ECC, y el 2,5-norbordarieno y el estireno fueron exclusivos de FSA. Algunos metabolites fueron comunes solamente en los tubérculos inoculados con ECC y ECA y no se detectaron en los inoculados con el hongo o en los testigos. Abundante acetona y butano se detectó en los tubérculos inoculados con ECC y ECA respectivamente. Se discute el posible uso de las diferencias de los perfiles volatiles metabólicos para distinguir las enfermedades en los tubérculos almacenados.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Burton WG. 1989. The Potato, 3rd ed. John Wiley & Son, Inc., New York.Google Scholar
  2. De Lacy Costello BPJ, P Evans, RJ Ewen, HE Gunson, NM Ratcliffe, and PTN Spencer-Phillips. 1999. Identification of volatiles generated by potato tubers (Solanum tuberosum cv:Maris Piper) infected byErwinia carotovora, Bacillus polymyxa andArthrobacter sp. Plant Path 48:345–351.CrossRefGoogle Scholar
  3. De Lacy Costello BPJ, P Evans, RJ Ewen, HE Gunson, NM Ratcliffe, and PTN Spencer-Phillips. 2001. Gas chromatography-mass spectrometry analyses of volatile organic compounds from potato tubers inoculated withPhytophthora infestons orFusarium coeruleum. Plant Path 50:489496.Google Scholar
  4. Dixon, RA, L Achnine, P Kota, C Liu, MSS Reddy, and L Wang. 2002. The phenylpropanoid pathway and plant defense—a genomics perspective. Mol Plant Path 3:371–390.CrossRefGoogle Scholar
  5. Fiehn O. 2002. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171.PubMedCrossRefGoogle Scholar
  6. Hamilton-Kemp TR, DD Archbold, JH Loughrin, RW Collins, and ME Byers. 1996. Metabolism of natural volatile compounds by strawberry fruit. J Agric Food Chem 44:2802–2805.CrossRefGoogle Scholar
  7. Kushalappa AC, and M Zulfiqar. 2001. Effect of wet incubation time and temperature on infection, and storage time and temperature on soft rot lesion expansion of potatoes inoculated withErwinia carotovora subsp.carotovora. Potato Res 44:233–242.CrossRefGoogle Scholar
  8. Kushalappa AC, LH Lui, CR Chen, and BH Lee. 2002. Volatile fingerprinting (SPME-GC-FID) to detect and discriminate diseases of potato tubers. Plant Dis 86:131–137.CrossRefGoogle Scholar
  9. Lui LH, and AC Kushalappa. 2002. Response surface models to predict potato tuber infection byFusarium sambucinum from duration of wetness and temperature, and dry rot lesion expansion from storage time and temperature. Inter J Food Microbiol 76:19–25.CrossRefGoogle Scholar
  10. Lyew D, Y Gariepy, C Ratti, GSV Raghavan, and AC Kushalappa. 1999. An apparatus to sample volatiles in a commercial potato storage facility. Amer Soc Agric Eng 15(3):243–247.Google Scholar
  11. Lyew D, Y Gariepy, GSV Raghavan, and AC Kushalappa 2001. Changes in volatile production during an infection of potatoes byErwinia carotovora. Food Res Int 34:807–813.CrossRefGoogle Scholar
  12. Marsili RT. 1999. SPME-MS-MVA as an electronic nose for the study of off-flavor in milk. J Agric Food Chem 47:648–654.PubMedCrossRefGoogle Scholar
  13. Ouellette E, GSV Raghavan, RD Reeleder, and R Greenhalgh. 1990. Volatile profiles for disease detection in stored potatoes. J Food Proc Pres 14:279–300.CrossRefGoogle Scholar
  14. Roessner U, A Luedemann, D Brust, O Fiehn, T Linke, L Willmitzer, and AR Fernie. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29.PubMedCrossRefGoogle Scholar
  15. Schoenemann J. 1991. Storage technology impacts potato industry. Am Veg Grower 39:24–26.Google Scholar
  16. Stevenson WR, R Loria, GD Franc, and DP Weingartner (eds). 2001. Compendium of Potato Diseases. II ed., APS Press, St. Paul, MN.Google Scholar
  17. Toivonen PMA. 1997. Non-ethylene, non-respiratory volatiles in harvested fruits and vegetables: their occurrence, illogical activity and control. Postharvest Biol Technol 12:109–125.CrossRefGoogle Scholar
  18. Varns JL and MT Glynn. 1979. Detection of disease in stored potatoes by volatile monitoring. Am Potato J 56:185–197.CrossRefGoogle Scholar
  19. Waterer DR, and MK Pritchard. 1984a. Volatile monitoring as a technique for differentiating betweenE. carotovora andC. sepedonicum infections in stored potatoes. Am Potato J 61:345–353.CrossRefGoogle Scholar
  20. Waterer DR, and MK Pritchard. 1984b. Monitoring of volatiles: A technique for detection of soft rot (Erwinia carotovora subsp.carotovora) in potato tubers. Can J Plant Pathol 6:165–171.Google Scholar
  21. Waterer DR, and MK Pritchard. 1985. Production of volatile metabolites in potato infected byE. carotovora var.carotovora. andE. carotovora var.atroseptica. Can J Plant Pathol 7:47–51.Google Scholar
  22. Wilson CL, and ME Wisniewski. 1989. Biological control of post-harvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27:425–441.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • L. H. Lui
    • 1
  • A. Vikram
    • 1
  • Y. Abu-Nada
    • 1
  • A. C. Kushalappa
    • 1
    Email author
  • G. S. V. Raghavan
    • 2
  • K. Al-Mughrabi
    • 3
  1. 1.Department of Plant ScienceMcGill UniversitySte-Anne de BellevueCanada
  2. 2.Bioresource EngineeringMcGill UniversitySte-Anne de BellevueCanada
  3. 3.New Brunswick Department of Agriculture, Fisheries and AquaculturePotato Development CentreWicklowCanada

Personalised recommendations