Advertisement

Folia Geobotanica

, 42:179 | Cite as

Randomvs non-random sampling: Effects on patterns of species abundance, species richness and vegetation-environment relationships

  • Martin DiekmannEmail author
  • Anke Kühne
  • Maike Isermann
Article

Abstract

From a strictly statistical perspective, most of the commonly used statistical tests cannot be performed on vegetation data obtained using a non-random sampling design. Despite this, non-randomly sampled plots such as phytosociological relevés still make sense: because they may focus on objectives not appropriately addressed by random sampling, such as the study of rare plant communities or species; and because random sampling is often more time-demanding and expensive. Considering the huge body of phytosociological data available, an interesting question arises: if we compare randomly and non-randomly sampled data sets, to what extent do the results of our analyses differ with respect to various species and vegetation parameters?

We present an attempt to tackle this question by comparing two data sets collected in a 25 km2 area close to the city of Bremen, northwestern Germany: the first data set consisted of 30 subjectively (non-randomly) placed, homogeneous plots across different plant communities, each of which was laid out in a nested design including 9 sizes from 0.5 m2 to 1,000 m2. The second data set consisted of 30 (again nested) plots randomly selected and located with a GPS device; plots were rejected only if they for some reason were inaccessible. The data collection was the same for both data sets: presence-absence of all vascular plants was recorded for the different plot sizes, and soil samples were collected for the determination of the values of some important environmental variables. For the comparison of the two data sets, we used either the complete data sets or sub-sets of those plots located in woodlands.

The main results included the following: (1) Species abundance patterns: Random sampling resulted in a larger number of common and a smaller number of rare species than non-random sampling. (2) Species richness at different spatial scales: For the small plot sizes, the number of species in the non-randomly placed plots was higher than in the randomly placed plots, while the differences were less pronounced at larger spatial scales. As a consequence, also the parameters of species-area curves differed between the data sets, especially in the sub-set including woodland plots. (3) Vegetation differentiation: In random sampling, there was considerable redundancy, i.e., there were several plots with high floristic similarity. (4) Vegetation-environment relationships: The ordination scores of the non-randomly placed plots showed a larger number of significant correlations to soil parameters than the scores of randomly placed plots. The results suggest that conclusions drawn from the analysis of non-randomly placed plots such as phytosociological relevés may be biased, especially regarding estimates of species abundance and species richness patterns.

Keywords

Detrended Correspondence Analysis Nested plots Soil variables Sørensen’s similarity index Species-area curve Vegetation differentiation 

References

  1. Arrhenius O. (1921): Species and area.J. Ecol. 9: 95–99.CrossRefGoogle Scholar
  2. Berg C., Dengler J. &Abdank A. (eds.) (2001):Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Tabellenband. Landesmat für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern. Weissdorn-Verlag, Jena.Google Scholar
  3. Berg C., Dengler J., Abdank A. &Isermann M. (eds.) (2004):Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Textband. Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern. Weissdorn-Verlag, Jena.Google Scholar
  4. Chytrý M., Tichý L. &Roleček J. (2003): Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient.Folia Geobot. 38: 429–442.CrossRefGoogle Scholar
  5. Colwell R.K. &Coddington J.A. (1994): Estimating terrestrial biodiversity through extrapolation.Philos. Trans., Ser. B 345: 101–118.CrossRefGoogle Scholar
  6. Dupré C., Wessberg C. &Diekmann M. (2002): Species richness in deciduous forests: effects of species pools and environmental variables.J. Veg. Sci. 13: 505–516.CrossRefGoogle Scholar
  7. Gimaret-Carpentier C., Pélissier R., Pascal J.-P. &Houllier F. (1998): Sampling strategies for the assessment of tree species diversity.J. Veg. Sci. 9: 161–172.CrossRefGoogle Scholar
  8. Grabherr G., Reiter K. &Willner W. (2003): Towards objectivity in vegetation classification: the example of the Austrian forests.Pl. Ecol. 169: 21–34.CrossRefGoogle Scholar
  9. Greig-Smith P. (1964):Quantitative plant ecology. Ed. 2. Butterworth, London.Google Scholar
  10. Hédl R. (2007): Vegetation diversity of beechwoods in a forested area: eligibility and properties of randomized versus subjective sampling.Folia Geobot. 27: 191–198.Google Scholar
  11. Hobohm C. (2005): Die Erforschung der Artenvielfalt in Pflanzengesellschaften — eine Zwischenbilanz.Tuexenia 25: 7–28.Google Scholar
  12. Kenkel N.C., Juhász-Nagy P. &Podani J. (1989): On sampling procedures in population and community ecology.Vegetatio 83: 195–207.CrossRefGoogle Scholar
  13. Kühne A. (2006):Untersuchungen zur Abschätzung der Phytodiversität auf Landschaftsebene. Unpubl. Diploma Thesis, Bremen.Google Scholar
  14. Lájer K. (2007): Statistical tests as inappropriate tools for data analysis performed on non-random samples of plant communities.Folia Geobot. 27: 115–122.Google Scholar
  15. Lepš J. &Šmilauer P. (2007): Subjectively sampled vegetation data: don’t throw out the baby with the bath water.Folia Geobot. 27: 169–178.Google Scholar
  16. Magurran A. (2004):Measuring biological diversity. Blackwell Publishing, Oxford.Google Scholar
  17. McCune B. &Mefford M.J. (1999):PC-ORD. Multivariate analysis of ecological data. Version 4. MjM Software Design, Gleneden Beach, Oregon, USA.Google Scholar
  18. Mucina L., Grabherr G. &Ellmauer T. (1993):Die Pflanzengesellschaften Österreichs — Teil I: Anthropogene Vegetation. Fischer-Verlag, Jena.Google Scholar
  19. Økland R.H. (1990): Vegetation ecology: theory, methods and applications with reference to Fennoscandia.Sommerfeltia, Suppl. 1: 1–233.Google Scholar
  20. Økland R.H. (2007): Statistical inference in ecological field studies.Folia Geobot. 27: 123–140.CrossRefGoogle Scholar
  21. Rédei T., Botta-Dukát Z., Csiky J., Kun A. &Tóth T. (2003): On the possible role of local effects on the species richness of acidic and calcareous rock grasslands in northern Hungary.Folia Geobot. 38: 453–467.CrossRefGoogle Scholar
  22. Rosenzweig M.L. (1995):Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
  23. Schaminée J.H.J., Stortelder A.H.F. &Westhoff V. (1995):De Vegetatie von Nederland — Deel 1. Inleiding tot de plantensociologie — grondslagen, methoden en toepassingen (The vegetation of the Netherlands — Part. 1. Introduction to phytosociology — basic approach, methods and applications). Opulus Press, Uppsala.Google Scholar
  24. Schuster B. &Diekmann M. (2003): Changes in species density along the soil pH gradient — evidence from German plant communities.Folia Geobot. 38: 367–379.CrossRefGoogle Scholar
  25. von Drachenfels O. (2004):Kartierschlüssel für Biotoptypen in Niedersachsen unter besonderer Berücksichtigung der nach § 28a und § 28b NNatG geschützten Biotope sowie der Lebensraumtypen von Anhang I der FFH-Richtlinie, Stand März 2004. Naturschutz Landschaftspfl. Niedersachsen A/4:1–240.Google Scholar
  26. Wilson J.B. (2007): Priorities in statistics, the sensitive feet of elephants, and don’t transform data.Folia Geobot. 27: 161–167.Google Scholar
  27. Wisskirchen R. &Haeupler H. (1998):Standardliste der Gefäß-und Blütenpflanzen Deutschlands. Ulmer Verlag, Stuttgart.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  1. 1.Vegetation Ecology and Conservation Biology, Institute of Ecology and Evolutionary BiologyBremen UniversityBremenGermany

Personalised recommendations