Folia Geobotanica

, Volume 42, Issue 2, pp 141–152 | Cite as

Statistical and biological consequences of preferential sampling in phytosociology: Theoretical considerations and a case study

  • Zoltán Botta-Dukát
  • Edit Kovács-Láng
  • Tamás Rédei
  • Miklós Kertész
  • János Garadnai
Article

Abstract

Due to the long tradition of the Braun-Blanquet approach, many relevés using this approach have been made. Recent developments in vegetation-plot databases provide an opportunity to effectively use these relevés to study ecological problems as well. Opinions differ, however, concerning the applicability of these datasets, often with their use being restricted to exploration and hypothesis generation only.

We assert that preferential sampling, which is characteristic of the Braun-Blanquet approach, means using a special definition of statistical population rather than non-random sampling. We present a case study, where consequences of using a preferential and non-preferential definition of statistical population are studied. Although the traits of stands that are preferred or avoided by the phytosociologist during preferential sampling can be identified, there are no general rules that could predict the difference between the preferential and non-preferential datasets obtained for the same object.

Keywords

Braun-Blanquet approach Phytosociological database Sampling criteria Statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borhidi A. (1995): Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora.Acta Bot. Hung. 39: 97–181.Google Scholar
  2. Borhidi A. (2003):Plant communities of Hungary. Akadémiai Kiadó, Budapest.Google Scholar
  3. Braun-Blanquet J. (1928):Pflanzensoziologie. Springer Verlag, Wien.Google Scholar
  4. Brisse H., de Ruffray P., Grandjouan G. &Hoff M. (1995): The Phytosociological Database “SOPHY” Part 1: Calibration of indicator plants, Part II: Socio-ecological classification of the relevés.Ann. Bot. (Rome) 53: 177–223.Google Scholar
  5. Chytrý M. (2001): Phytosociological data give biased estimates of species richness.J. Veg. Sci. 12: 439–444.CrossRefGoogle Scholar
  6. Chytrý M., Tichý L. &Roleček J. (2003): Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient.Folia Geobot. 38: 429–442.CrossRefGoogle Scholar
  7. Chytrý M. &Rafajová M. (2003): Czech National Phytosociological Database: basic statistics of the available vegetation-plot data.Preslia 75: 1–15.Google Scholar
  8. Csontos P. (1996):Az aljnövényzet változásai cseres-tölgyes erdők regenerációs szukcessziójában (Regeneration succession of sessile oak — turkey oak forests: Processes in the herb layer). Scientia Publishing, Budapest.Google Scholar
  9. Dierschke H. (1994):Pflanzensoziologie. Verlag Eugen Ulmer, Stuttgart.Google Scholar
  10. Duckworth J.C., Bunce R.G.H. &Malloch A.J.C. (2000): Vegetation gradients in Atlantic Europe: the use of existing phytosociological data in preliminary investigations on the potential effects of climate change on British vegetation.Global Ecol. Biogeogr. 9: 187–199.CrossRefGoogle Scholar
  11. Ewald J. (2001): Der Beitrag pflanzensoziologischer Datenbanken zur vegetationsökologischen Forschung.Ber. Reinhold Tüxen Ges. 13: 53–69.Google Scholar
  12. Font X. &Ninot J.-M. (1995): A regional project for drawing up inventories of flora and vegetation in Catalonia (Spain).Ann. Bot. (Rome) 53: 99–105.Google Scholar
  13. Hallgren E., Palmer M.W. &Milberg P. (1999): Data diving with cross-validation: an investigation of broad-scale gradients in Swedish weed communities.J. Ecol. 87: 1037–1051.CrossRefGoogle Scholar
  14. Hahn I. &Scheuring I. (2003): The effect of measurement scales on estimating vegetation cover: a computer experiment.Community Ecol. 4: 29–33.CrossRefGoogle Scholar
  15. Hennekens S.M. &Schaminée J.H.J. (2001): TURBOVEG, a comprehensive database management system for vegetation data.J. Veg. Sci. 12: 589–591.CrossRefGoogle Scholar
  16. Holeksa J. &Wozniak G. (2005): Biased vegetation patterns and detection of vegetation changes using phytosociological databeses. A case study in the forest of the Babia Góra National Park (the West Carpathians, Poland).Phytocoenologia 35: 1–18.CrossRefGoogle Scholar
  17. Horváth F., Dobolyi Z.K., Morschhauser T., Lőkös L., Karas L. &Szerdahelyi T. (1995):FLÓRA database 1.2. MTA-ÖBKI & MTM Növénytára, Vácrátót.Google Scholar
  18. Kennedy K.A. &Addison P.A. (1987): Some consideration for the use of visual estimates of plant cover in biomonitoring.J. Ecol. 75: 151–157.CrossRefGoogle Scholar
  19. Kent M. &Coker P. (1992):Vegetation description and analysis. A practical approach. John Wiley & Sons, Chichester.Google Scholar
  20. Kienast F., Wildi O. &Brzeziecki B. (1998): Potential impacts of climate change on species richness in mountainforests — An ecological risk assessment.Biol. Conservation 83: 291–305.CrossRefGoogle Scholar
  21. Kovács-Láng E., Kröel-Dulay Gy., Kertész M., Fekete G., Bartha S., Mika J., Dobi-Wantuch I., Rédei T., Rajkai K. &Hahn I. (2000): Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change.Phytocoenologia 30: 385–407.Google Scholar
  22. Kröel-Dulay Gy., Ódor P., Peters D.P.C. &Hochstrasser T. (2004): Distribution of plant species at a biome transition zone in New Mexico.J. Veg. Sci. 15: 531–538.CrossRefGoogle Scholar
  23. Kun A. &Ittzés P. (1995): ASeseli leucospermum W. et K. és a nyílt dolomitsziklagyep (Seseli leucospermo-Festucetum pallentis) előfordulása szarmata mészkövön (Occurence ofSeseli leucospermum W. et K. andSeseli leucospermo-Festucetum pallentis community on sarmatian limestone).Bot. Közlem. 82: 27–34.Google Scholar
  24. Legendre P. &Legendre L. (1998):Numerical ecology. Ed. 2. Elsevier, Amsterdam.Google Scholar
  25. Legendre P. &Anderson M.J. (1999): Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments.Ecol. Monogr. 69: 1–24.CrossRefGoogle Scholar
  26. Mirkin B.M. (1989): Plant taxonomy and syntaxonomy: a comparative analysis.Vegetatio 82: 35–40.CrossRefGoogle Scholar
  27. Mucina L. (1997): Classification of vegetation: Past, present and future.J. Veg. Sci. 8: 751–760.CrossRefGoogle Scholar
  28. Mucina L., Bredenkamp G.J., Hoare D.B. &McDonald D.J. (2000): A national vegetation database for South Africa.S. African J. Sci. 96: 497–498.Google Scholar
  29. Mucina L., Rodwell J. S., Schaminée J.H.J. &Dierschke H. (1993): European vegetation survey: current state of some national programmes.J. Veg. Sci. 4: 429–439.CrossRefGoogle Scholar
  30. Pignatti S., Dominici E. &Pietrosanti S. (1997): European vegetation survey — from the methodological discussion to the first approximation.Ann. Bot. (Rome) 45: 5–16.Google Scholar
  31. Podani J. (2000):Introduction to the exploration of multivariate biological data. Backhuys Publishers, Leiden.Google Scholar
  32. Rédei T. (2005):A növényi fajkészlet eloszlása nyílt szárazgyepekben (The distribution of plant species pool in open dry grasslands). PhD. Thesis, Budapest.Google Scholar
  33. Rédei T., Botta-Dukát Z., Csiky J., Kun A. &Tóth T. (2003): On the possible role of local effects on species richness of acidic and calcareous rock grasslands in northern Hungary.Folia Geobot. 38: 453–467.CrossRefGoogle Scholar
  34. Rodwell J.S. (1995): The European Vegetation Survey questionnaire: an overview of phytosociological data, vegetation survey programmes and databases in Europe.Ann. Bot. (Rome) 53: 87–98.Google Scholar
  35. Rodwell J.S., Schaminée J.H.J., Mucina L., Pignatti S., Dring J. & Moss D. (2002):The diversity of European vegetation. An overview of phytosociological alliances and their relationships to EUNIS habitats. EC-LNV. Report EC-LNV. nr. 2002/054, Wageningen.Google Scholar
  36. Ruprecht E. &Botta-Dukát Z. (1999): Long-term vegetation textural changes of three fen communities near Cluj-Napoca (Romania).Acta Bot. Hung. 42: 263–281.Google Scholar
  37. Sokal R.R. &Rohlf F.J. (1981):Biometry. The principles and practice of statistics in biological research. Ed. 2. Freeman, New York.Google Scholar
  38. Sprent P. &Smeeton N.C. (2001):Applied nonparametric statistical methods. Chapman & Hall/CRC, Boca Raton.Google Scholar
  39. SPSS Inc. (1999):SPSS base 10.0 user’s guide. SPSS Inc., Chicago.Google Scholar
  40. Sykes J.M., Horrill A.D. &Mountford M.D. (1983): Use of visual cover assessments as quantitative estimators of some British woodland taxa.J. Ecol. 71: 437–450.CrossRefGoogle Scholar
  41. ter Braak C.J.F. &Šmilauer P. (1998):CANOCO reference manual and user’s guide to Canoco for Windows. Centre for Biometry, Wageningen.Google Scholar
  42. Westhoff V. &van der Maarel E. (1980): The Braun-Blanquet approach. In:Whittaker R.H. (ed.),Classification of plant communities, Junk, The Hague.Google Scholar
  43. Zar J.H. (1999):Biostatistical analysis. Ed. 4. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  • Zoltán Botta-Dukát
    • 1
  • Edit Kovács-Láng
    • 1
  • Tamás Rédei
    • 1
  • Miklós Kertész
    • 1
  • János Garadnai
    • 1
  1. 1.Institute of Ecology and BotanyHungarian Academy of SciencesVácrátótHungary

Personalised recommendations