Pathology of chronic obstructive pulmonary disease

  • Maria Szilasi
  • Tamás Dolinay
  • Zoltán Nemes
  • János Strausz
Seminar

Abstract

Chronic obstructive pulmonary disease is one of the leading causes of death and morbidity worldwide. Despite intensive investigation, its pathology and pathophysiology are not well understood. The hallmarks of the disease are irreversible airflow limitation and chronic inflammation. Small airway obstruction due to progressive inflammation and fibrosis, and the loss of elastic recoil mediated by elastolysis and apoptosis equally contribute to pathologic changes. However, it is debated to what extent the obstruction of large airways leads to altered lung function. Three morphologic entities are described in the literature under one disease; chronic bronchitis, obstructive bronchiolitis and emphysema may appear in the same patient at the same time. The authors review pathologic changes observed in chronic obstructive pulmonary disease, including acute exacerbations and secondary pulmonary hypertension as severe but common complications of the disease. Furthermore, we detail recent scientific evidences for major cellular and molecular inflammatory pathway activation. These mechanisms result in accelerated apoptosis, remodeling and increased proinflammatory cytokine release. Targeting intracellular pathological changes may lead to the discovery of a new generation of drugs that could reduce chronic obstruction before airway irreversibility is established.

Key words

chronic bronchitis obstructive bronchiolitis emphysema inflammation 

References

  1. 1.
    Aoshiba K, Yokohori N, Nagai A: Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol 28: 555–562, 2003PubMedCrossRefGoogle Scholar
  2. 2.
    Böszörményi Nagy G: Chronic obstructive pulmonary disease. In: Epidemiology and Functional Data in Pulmonology Institutions in year 2004 [book in Hungarian] (Eds: Jonás J, Fodor K, Türgyei M and Nyári L), Országos Korányi TBC és Pulmonológiai Intézet, 2005, pp. 50–56Google Scholar
  3. 3.
    Chodosh S: Treatment of acute exacerbations of chronic bronchitis: state of the art. Am J Med 91: 87S, 1991PubMedCrossRefGoogle Scholar
  4. 4.
    Daheshia M: Therapeutic inhibition of matrix metalloproteinases for the treatment of chronic obstructive pulmonary disease (COPD). Curr Med Res Opin 21: 587–593, 2005PubMedCrossRefGoogle Scholar
  5. 5.
    de Dodoy I, Donahoe M, Calhoun WJ, et al: Elevated TNFalpha production by peripheral blood monocytes of weightloosing COPD patients. Am J Respir Crit Care Med 153: 633–637, 1996Google Scholar
  6. 6.
    Deshmukh HS, Case LM, Wesselkamper SC: Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. Am J Respir Crit Care Med 171: 305–314, 2005PubMedCrossRefGoogle Scholar
  7. 7.
    Di Stefano A, Capelli A, Lusuardi M, et al: Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 158: 1277–1285, 1998PubMedGoogle Scholar
  8. 8.
    Drost EM, Skwarski J, Sauleda J, et al: Oxidative stress and airway inflammation in severe extracerbations of COPD. Thorax 60: 293–300, 2005PubMedCrossRefGoogle Scholar
  9. 9.
    Enelow RI, Mohammed AZ, Staler MH, et al: Structural and functional consequences of alveolar cell recognition by CD8+ T lymphocytes in experimental lung disease. J Clin Invest 102: 1653–1661, 1998PubMedCrossRefGoogle Scholar
  10. 10.
    Fletcher C, Peto R, Tinker C, et al: The natural history of chronic bronchitis and emphysema: an eight-year study of early chronic obstructive lung disease in working men in London. Oxford University Press, Oxford, England: 93, 1976Google Scholar
  11. 11.
    Giaid A, Yanagisawa M, Langleben D, et al: Expression of endothelin-1 in lungs of patients with pulmonary hypertension. N Engl J Med 328: 1732–1739, 1993PubMedCrossRefGoogle Scholar
  12. 12.
    Gump DW, Philips CA, Forsyth BR: Role of infection in chronic bronchitis. Am Rev Respir Dis 113: 465, 1976PubMedGoogle Scholar
  13. 13.
    Hansel TT, Barnes PJ, Celli BR: Introduction: definitions, burden and causation. In: An Atlas of Chronic Obstructive Pulmonary Disease (Eds: Hansel TT, Barnes PJ and Celli BR), The Parthenon Publishing Group, 2004, pp. 1–19Google Scholar
  14. 14.
    Haraguchi M, Shimura S, Shirato K: Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. Am J Respir Crit Care Med 159: 1005–1013, 1999PubMedGoogle Scholar
  15. 15.
    Hogg JC, Chu F, Utokaparch S, et al: The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engi J Med 350: 2645–2653, 2004CrossRefGoogle Scholar
  16. 16.
    Hogg JC, Macklem PT, Thurlbeck WM: Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 278: 1355–1360, 1968PubMedGoogle Scholar
  17. 17.
    Hubbard RC, Fells G, Gadek J, et al: Neutrophil accumulation in the lung in alpha-1 antitrypsin deficiency. Spontaneous release of leukotriene B4 by alveolar macrophages. J Clin Invest 88: 891–897, 1991PubMedCrossRefGoogle Scholar
  18. 18.
    Jeffery PK: Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 164: S28-S38, 2001PubMedGoogle Scholar
  19. 19.
    Kasahara Y, Tuder RM, Cool CD, et al: Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med 163: 737–744, 2001PubMedGoogle Scholar
  20. 20.
    Kasahara Y, Tunder RM, Taraseviciene-Stewart L, et al: Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106: 1311–1319, 2000PubMedCrossRefGoogle Scholar
  21. 21.
    Keatings VM, Collins PD, Scott DM, et al: Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153: 530–534, 1996PubMedGoogle Scholar
  22. 22.
    Kim WD, Eidelman DH, Hquierdo JL, et al: Centrilobular and panlobular emphysema in smokers. Two distinct morphological and functional entities. Am Rev Respir Dis 144: 1385–1390, 1991PubMedGoogle Scholar
  23. 23.
    Kranenburg AR, de Boer WI, Alagappan VK, et al: Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax 60: 106–113, 2005PubMedCrossRefGoogle Scholar
  24. 24.
    Ladner KJ, Caligiuri MA, Guttridge DC: TNF regulated biphasic activation of NF-kB is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 24278: 2294–2303, 2003CrossRefGoogle Scholar
  25. 25.
    Lams BE, Sousa AR, Rees PJ, Lee TH: Immunopathology of the small-airway submucosa in smokers with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158: 1518–1523, 1998PubMedGoogle Scholar
  26. 26.
    Lams BE, Sousa AR, Rees PJ, Lee TH: Subepithelial immunopathology of the large airways in smokers with and without chronic obstructive pulmonary disease. Eur Respir J 15: 512–516, 2000PubMedCrossRefGoogle Scholar
  27. 27.
    Langen RC, Schols AM, Kelders MC, et al: Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. Faseb J 15: 1169–1180, 2001PubMedCrossRefGoogle Scholar
  28. 28.
    Lees AW, McNaught W: Bacteriology of lower respiratory tract secretions, sputum and upper respiratory tract secretions in “normals” and chronic bronchitis. Lancet 2: 1112, 1959PubMedCrossRefGoogle Scholar
  29. 29.
    Li YP, Schwartz RJ, Waddell ID, et al: Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappa B activation in response to tumor necrosis factor alpha. Faseb 112:871–880, 1998Google Scholar
  30. 30.
    Liu AN, Mohammed AZ, Rice WR, et al: Perforin-independent CD8(+) T-cell-mediated cytotoxicity of alveolar epithelial cells is preferentially mediated by tumor necrosis factor-alpha. Am J Respir Cell Mol Biol 20: 849–858, 1999PubMedGoogle Scholar
  31. 31.
    Matsuba K, Thurlbeck WM: The number and dimension of small airways in emphysematous lungs. Am J Pathol 67: 265–275, 1972PubMedGoogle Scholar
  32. 32.
    McCrory DC, Brown C, Gelfand SE, et al: Management of acute exacerbation of COPD: a summary and appraisal of published evidence. Chest 119: 1190–1209, 2001PubMedCrossRefGoogle Scholar
  33. 33.
    Medical Research Council: Definition and classification of chronic bronchitis for clinical and epidemiological purposes. Lancet i: 775–779, 1965Google Scholar
  34. 34.
    Miotto D, Hollenberg MD, Bunnett NW, et al: Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers. Thorax 57: 146–151, 2002PubMedCrossRefGoogle Scholar
  35. 35.
    NHLBI/WHO workshop report: Global initiative for chronic obstructive lung disease. National Heart, Lung and Blood Institution Publication Nr. 2701, 2001Google Scholar
  36. 36.
    Niewoehner DE, Klienerman J, Rice D: Pathologic changes in the peripheral airways of young cigarette smokers. N Engl J Med 291: 755–758, 1974PubMedGoogle Scholar
  37. 37.
    Ning W, Li CJ, Kaminski N, et al: Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 101: 14895–14900, 2004PubMedCrossRefGoogle Scholar
  38. 38.
    O’Shaughnessy TC, Ansari TW, Barnes NC, et al: Reticular basement membrane thickness in moderately severe asthma and smokers’ chronic bronchitis with or without airflow obstruction [abstract]. Am J Respir Crit Care Med 153: A879, 1996Google Scholar
  39. 39.
    Oudijk EJ, Lammers JW, Koenderman L: Systemic inflammation in chronic obstructive pulmonary disease. Eur Respir J Suppl 46: 5s-13s, 2003Google Scholar
  40. 40.
    Payne D, Roger AV, Jaffe A, et al: Reticular basement membrane thickness in children with severe asthma [abstract]. Arch Dis Child 82: A42, 2000Google Scholar
  41. 41.
    Peinado VI, Barbera JA, Abate P, et al: Inflammatory reaction in pulmonary muscular arteries of patients with mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med 159: 1605–1611, 1999PubMedGoogle Scholar
  42. 42.
    Qiu Y, Zhu J, Bandi V, et al: Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 168: 968–975, 2003PubMedCrossRefGoogle Scholar
  43. 43.
    Reid L: Measurement of bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 6: 132–141, 1960CrossRefGoogle Scholar
  44. 44.
    Reid L: Pathology of chronic bronchitis. Lancet 266: 274–278, 1954PubMedGoogle Scholar
  45. 45.
    Richter A, O’Donnell RA, Powell RM, et al: Automne ligands for the epidermal growth factor receptor mediate interleukin-8 release from bronchial epithelial cells in response to cigarette smoke. Am J Respir Cell Mol Biol 27: 85–90, 2002PubMedGoogle Scholar
  46. 46.
    Rohde G, Wiethege A, Borg I: Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalization: a case-control study. Thorax 58: 37, 2003PubMedCrossRefGoogle Scholar
  47. 47.
    Rooks SW, Bayley DL, Hill SL, et al: Bronchial inflammation in acute bacterial exacerbation of chronic bronchitis: the role of leukotriene B4. Eur Respir J 15: 274–280, 2000CrossRefGoogle Scholar
  48. 48.
    Saetta M: Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160: S17-S20, 1999PubMedGoogle Scholar
  49. 49.
    Saetta M, Baraldo S, Corbino L, et al: CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160: 711–717, 1999PubMedGoogle Scholar
  50. 50.
    Saetta M, Di Stefano A, Maestrelli P, et al: Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 147: 301–306, 1993PubMedGoogle Scholar
  51. 51.
    Saetta M, Di Stefano A, Maestrelli P, et al: Airway eosinophilia in chronic bronchitis during exacerbations. Am.1 Respir Crit Care Med 150: 1646–1652, 1994Google Scholar
  52. 52.
    Saetta M, Di Stefano A, Turato G, et al: CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157: 822–826, 1998PubMedGoogle Scholar
  53. 53.
    Saetta M, Turato G, Baraldo S, et al: Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med 161: 1016–1021, 2000PubMedGoogle Scholar
  54. 54.
    Saetta M, Turato G, Maestrelli P, et al: Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163: 1304–1309, 2001PubMedGoogle Scholar
  55. 55.
    Saint S, Bent S, Vittinghoff E, et al: Antibiotics in chronic obstructive pulmonary disease exacerbation: A meta-analysis. JAMA 273: 957–960, 1995PubMedCrossRefGoogle Scholar
  56. 56.
    Santos S, Peinado VI, Ramirez J, et al: Enhanced expression of vascular endotheliai growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167: 1250–1256, 2003PubMedCrossRefGoogle Scholar
  57. 57.
    Segura-Valdez L, Pardo A, Gaxiola M: Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117: 684–694, 2000PubMedCrossRefGoogle Scholar
  58. 58.
    Seti S, Evans N, Grant BJ, et al: New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 347: 465–473, 2002CrossRefGoogle Scholar
  59. 59.
    Snider GL: Chronic obstructive pulmonary disease: a continuing challenge. Am Rev Respir Dis 133: 942–944, 1986PubMedGoogle Scholar
  60. 60.
    Takeyama K, Dabbagh K, Lee HM, et al: Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A 96: 3081–3086, 1999PubMedCrossRefGoogle Scholar
  61. 61.
    ten Hacken NH, Postma DS, Timens W: Are asthma and chronic obstructive pulmonary disease different diseases? Con. Monaldi Arch Chest Dis 54: 551–558, 1999Google Scholar
  62. 62.
    Tuder RM, Zhen L, Cho CY, et al: Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Moi Biol 29: 88–97, 2003CrossRefGoogle Scholar
  63. 63.
    Vestbo J, Lange P: Can GOLD Stage 0 provide information of prognostic value in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 66: 329–332, 2002CrossRefGoogle Scholar
  64. 64.
    Vestbo J, Prescott E, Lange P: Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Am J Respir Crit Care Med 153: 1530–1535, 1996PubMedGoogle Scholar
  65. 65.
    Vlahovic G, Russell ML, Mercer RR, et al: Cellular and connective tissue changes in alveolar septal wall in emphysema. Am J Respir Crit Care Med 160: 2086–2092, 1999PubMedGoogle Scholar
  66. 66.
    Vliagoftis H, Schwingshackl A, Milne CD, et al: Proteinaseactivated receptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J Allergy Clin Immunol 106: 537–545, 2000PubMedCrossRefGoogle Scholar
  67. 67.
    Zheng T, Kong MJ, Crothers K, et al: Role of cathepsin Sdependent epithelial cell apoptosis in IFN-gamma-induced alveolar remodeling and pulmonary emphysema. J Immunol 174: 8106–8115, 2005PubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2006

Authors and Affiliations

  • Maria Szilasi
    • 1
  • Tamás Dolinay
    • 1
  • Zoltán Nemes
    • 2
  • János Strausz
    • 3
  1. 1.Department of Pulmonary MedicineUniversity of Debrecen Medical and Health Science CenterDebrecenHungary
  2. 2.Department of PathologyUniversity of Debrecen Medical and Health Science CenterDebrecenHungary
  3. 3.Korányi” National Institute for Tuberculosis and PulmonologyBudapestHungary

Personalised recommendations