Fibers and Polymers

, Volume 3, Issue 3, pp 120–127 | Cite as

Nonsteady plane-strain ideal forming without elastic dead-zone

  • Kwansoo Chung
  • Wonoh Lee
  • Tae Jin Kang
  • Jae Ryoun Youn


Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.


Rigid-perfect plasticity Nonsteady bulk forming Characteristic method Orthogonal convective coordinate system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Richmond and M. L. Devenpeck,Proc. 4 th U.S. Natn. Cong. Appl. Mech., 1053 (1962).Google Scholar
  2. 2.
    O. Richmond and H. L. Morrison,J. Mech. Phys. Solids,15, 195 (1967).CrossRefGoogle Scholar
  3. 3.
    O. Richmond,Mechanics of Solid State, Univ. of Toronto Press, 154 (1968).Google Scholar
  4. 4.
    R. Hill,J. Mech. Phys. Solids,15, 223 (1967).CrossRefGoogle Scholar
  5. 5.
    H. A. Wienecke and O. Richmond,J. Appl. Mech., (accepted).Google Scholar
  6. 6.
    K. Chung and O. Richmond,J. Appl. Mech.,61, 176 (1994).CrossRefGoogle Scholar
  7. 7.
    K. Chung and O. Richmond,Int. J. Plasticity,9, 907 (1993).CrossRefGoogle Scholar
  8. 8.
    K. Chung and O. Richmond,Int. J. Mech. Sci.,34, 617 (1992).CrossRefGoogle Scholar
  9. 9.
    F. Barlat, K. Chung, and O. Richmond,Metallurgical and Materials Trans.,25A, 1209 (1994).CrossRefGoogle Scholar
  10. 10.
    K. Chung, F. Barlat, J. C. Brem, D. J. Lege, and O. Richmond,Int. J. Mech. Sci.,39, 105 (1997).CrossRefGoogle Scholar
  11. 11.
    O. Richmond and K. Chung,Int. J. Mech. Sci.,42, 2455 (2000).CrossRefGoogle Scholar
  12. 12.
    K. Chung, J. W. Yoon, and O. Richmond,Int. J. Plasticity,16, 595 (2000).CrossRefGoogle Scholar
  13. 13.
    A. Nadai, “Theory of Flow and Fracture of Solids”, Vol. 2, pp.96, McGraw-Hill, New York, 1963.Google Scholar
  14. 14.
    R. Hill,J. Mech. Phys. Solids,34, 511 (1986).CrossRefGoogle Scholar
  15. 15.
    K. Chung and O. Richmond,Int. J. Mech. Sci.,34, 575 (1992).CrossRefGoogle Scholar
  16. 16.
    O. Richmond and S. Alexandrov,J. Mech. Phys. Solids,48, 1735 (2000).CrossRefGoogle Scholar
  17. 17.
    K. Chung, W. Lee, and W. R. Yu,J. Korean Fiber Soc.,39, 407 (2002).Google Scholar
  18. 18.
    K. Chung, W. Lee, and O. Richmond,Int. J. Plasticity, (submitted).Google Scholar
  19. 19.
    S. Alexandrov, private communication, (2001).Google Scholar

Copyright information

© The Korean Fiber Society 2002

Authors and Affiliations

  • Kwansoo Chung
    • 1
  • Wonoh Lee
    • 1
  • Tae Jin Kang
    • 1
  • Jae Ryoun Youn
    • 1
  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations