Advertisement

Advanced boundary conditions for eigenmode expansion models

  • Peter BienstmanEmail author
  • Roel Baets
Article

Abstract

In order to realise the full potential of eigenmode expansion models, advanced boundary conditions are required that can absorb the radiation impinging on the walls of the discretisation volume. In this paper, we will discuss and compare a number of these boundary conditions, like perfectly matched layers (PMLs), open (leaky mode) boundary conditions and transparent boundary conditions (TBCs). We will also introduce the case of PMLs with infinite absorption and discuss its relation to leaky mode expansion, leading to a deeper insight into the physics of PML.

Key words

absorbing boundary conditions eigenmode expansion leaky modes optical modelling perfectly matched layers transparent boundary conditions 

References

  1. Bérenger, J.-P.J. Comput. Phys. 114 185, 1994.CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. Bienstman, P. and R. Baets. 2001,Opt. Quant. Electron accepted for publication.Google Scholar
  3. Bienstman, P., H. Derudder, R. Baets, F. Olyslager and D. De Zutter.IEEE Trans. Microwave Theor. Tech. 49 349, 2001.CrossRefGoogle Scholar
  4. Chew, W., J. Jin and E. Michielssen. ‘Complex coordinate stretching as a generalized absorbing boundary condition’.Microwave Opt. Technol. Lett. 15 363, 1997.CrossRefGoogle Scholar
  5. Chew, W.C. and W.H. Weedon. ‘A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates’.Microwave Opt. Technol. Lett. 7 599, 1994. Derudder, H., F. Olyslager, D. De Zutter and S. Van den Berghe.IEEE Trans. Antennas Propagat. 49 185, 2001.CrossRefGoogle Scholar
  6. Gerdes, J., B. Lunitz and R. Pregla.Electron. Lett. 28 1013, 1992.CrossRefGoogle Scholar
  7. Hadley, G.R.Opt. Lett. 16 624, 1991.ADSGoogle Scholar
  8. Haes, J. Study of beam properties of laser diodes and design of integrated beam expansion structures. Ph.D. Thesis, Ghent University, 1996.Google Scholar
  9. Herzinger, C., C. Lu, T. DeTemple and W. Chew.IEEE J. Quantum Electron. 29 2273, 1993.CrossRefADSGoogle Scholar
  10. Ikegami, T.IEEE J. Quantum Electron. 8 470, 1972.CrossRefADSGoogle Scholar
  11. Lee, D.L. Electromagnetic Principles of Integrated Optics, John Wiley and sons, New York, 1986.Google Scholar
  12. Lee, S.-L., Y. Chung, L.A. Coldren and N. Dagli.IEEE J. Quantum Electron. 31 1790, 1995.CrossRefADSGoogle Scholar
  13. Leontovich, M. Investigations of Radiowave Propagation, Part II. Printing house of the Russian Academy of Sciences, Moscow, 1948.Google Scholar
  14. Oliner, A.A., S.-T. Peng, T.-I. Hsu and A. Sanchez.IEEE Trans. Microwave Theor. Tech. 29 855, 1981.CrossRefADSGoogle Scholar
  15. Rogier, H. and D. De Zutter.IEEE Trans. Microwave Theor. Tech. 49 712, 2001.CrossRefGoogle Scholar
  16. Sacks, Z., D. Kingsland, R. Lee and J. Lee.IEEE Trans. Antennas Propagat. 43 1460, 1995.CrossRefADSGoogle Scholar
  17. Sammut, R. and A. Snyder.Appl. Opt. 15 1040, 1976.ADSGoogle Scholar
  18. Scarmozzino, R., A. Gopinath, R. Pregla and S. Helfert.IEEE J. Sel. Top. Quantum Electron. 6 150, 2000.CrossRefGoogle Scholar
  19. Smith, R. and S. Houde-Walter.J.Opt. Soc. Am. A 12 715, 1995.ADSGoogle Scholar
  20. Smith, R., S. Houde-Walter and G. Forbes.Opt. Lett. 16 1316, 1991.ADSCrossRefGoogle Scholar
  21. Snyder, A. and J. Love.Optical Waveguide Theory. Chapman and Hall, London, 1983.Google Scholar
  22. Taflove, A. Computational Electrodynamics, the Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 1995.zbMATHGoogle Scholar
  23. Teixeira, F. and W. Chew.Microwave Guided Wave Lett. 7 371, 1997.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of Information Technology, INTEC/IMECGhent University, Sint-Pietersnieuwstraat 41GentBelgium

Personalised recommendations