Posterior odds ratios for selected regression hypotheses

Summary

Bayesian posterior odds ratios for frequently encountered hypotheses about parameters of the normal linear multiple regression model are derived and discussed. For the particular prior distributions utilized, it is found that the posterior odds ratios can be well approximated by functions that are monotonic in usual sampling theoryF statistics. Some implications of this finding and the relation of our work to the pioneering work of Jeffreys and others are considered. Tabulations of odds ratios are provided and discussed.

This is a preview of subscription content, log in to check access.

References

  1. Cramer, H. (1946)Mathematical Methods of Statistics. Princeton: Princeton University Press.

    Google Scholar 

  2. DeGroot, M.H. (1973) Doing What Comes Naturally: Interpreting a Tail Area as a Posterior Probability or as a Likelihood Ratio,J. Amer. Statist. Assoc. 68, 966–969.

    MATH  Article  MathSciNet  Google Scholar 

  3. Dickey, J.M. (1971) The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location ParametersAnn. Math. Statist. 42, 204–223.

    MATH  Article  MathSciNet  Google Scholar 

  4. — (1975) Bayesian Alternatives to the F-test and Least-Squares Estimates in the Normal Linear Model. InStudies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, (S.E. Fienberg and A. Zellner eds.), 515–554 Amsterdam: North-Holland.

    Google Scholar 

  5. — (1977) Is the Tail Area Useful as an Approximate Bayes factor?J. Amer. Statist. Assoc. 72, 138–142.

    MATH  Article  MathSciNet  Google Scholar 

  6. Gaver, K.M. andM.S. Geisel (1974) Discriminating Among Alternative Models: Bayesian and Non-Bayesian Methods, inFrontiers of Econometrics, (P. Zarembka ed.) New York: Academic Press.

    Google Scholar 

  7. Geisel, M.S. (1970) Comparing and Choosing Among Parametric Statistical Models: A Bayesian Analysis with Macroeconomic Application. Ph. D. Thesis. University of Chicago.

  8. Jaynes, E.T. (1976) Confidence Intervals Vs. Bayesian Intervals, inFoundations of Probability. Theory, Statistical Inference, and Statistical Theories of Science, (W.L. Harper and C.A. Hooker eds.) 175–213. Dordrecht-Holland: D. Reidel.

    Google Scholar 

  9. Jeffreys, H. (1957),Scientific Inference (2nd ed.) Cambridge: University Press.

    Google Scholar 

  10. — (1967)Theory of Probability (3rd rev. ed.), Oxford: University Press.

    Google Scholar 

  11. — (1980) “Some General Points in Probability Theory”, inBayesian Analysis in Econometrics and Statistics: Essays in Honor of Harold Jeffreys (A. Zellner ed.) 451–453. Amsterdam: North-Holland.

    Google Scholar 

  12. Leamer, E.E. (1978)Specification Searches, New York: Wiley

    Google Scholar 

  13. Lempers, F.B. (1971),Posterior Probabilities of Alternative Linear Models, Rotterdam: University Press.

    Google Scholar 

  14. Lindley, D.V. (1957) A Statistical Paradox,Biometrika 44, 187–192.

    MATH  MathSciNet  Google Scholar 

  15. — (1961) The Use of Prior Probability Distributions in Statistical Inference and Decisions, inProc. Fourth Berkeley Symp. (J. Neyman, ed.) 453–468. Berkeley: University of California Press.

    Google Scholar 

  16. Schwarz, G. (1978) Estimating the Dimension of a Model,Ann. Statist. 6, 461–464.

    MATH  Article  MathSciNet  Google Scholar 

  17. Thornber, E.H. (1966) Applications of Decision Theory to Econometrics, Ph. D. thesis, University of Chicago.

  18. Zellner, A. (1971),An Introduction to Bayesian Inference in Econometrics, New York: Wiley

    Google Scholar 

  19. — andW. Vandaele (1975) Bayes-Stein Estimators for k-means, Regression and Simultaneous Equation Models, inStudies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage (S.E. Fienberg and A. Zellner eds.) 627–653 Amsterdam: North-Holland.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Zellner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zellner, A., Siow, A. Posterior odds ratios for selected regression hypotheses. Trabajos de Estadistica Y de Investigacion Operativa 31, 585–603 (1980). https://doi.org/10.1007/BF02888369

Download citation

Keywords

  • Bayesian Odds Ratios
  • Hypothesis Testing
  • Regression Hypotheses
  • Regression Model