Advertisement

Least squares approximation in Bayesian analysis

  • Michel Mouchart
  • Léopold Simar
Approximations Invited Papers
  • 36 Downloads

Summary

The paper presents in a simple and unified framework the Least-Squares approximation of posterior expectations. Particular structures of the sampling process and of the prior distribution are used to organize and to generalize previous results. The two basic structures are obtained by considering unbiased estimators and exchangeable processes. These ideas are applied to the estimation of the mean. Sufficient reduction of the data is analysed when only the Least-Squares approximation is involved.

Keywords

Linear Bayes Least Squares Credibility Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, A.L. (1950), Credibility Procedures, Laplace’s Generalization of Bayes Rule, and the Combination of Collateral Knowledge with Observed Data.Proceedings of the Casualty Actuarial Society,37, 7–23.MathSciNetGoogle Scholar
  2. Bouchat, A., (1977),Théorie de la crédibilité: un point de vue non actuariel. Mémoire du “Diplôme Spécial en Statistique”. Université Catholique de Louvain.Google Scholar
  3. Bühlmann, H., (1970),Mathematical Methods in Risk Theory. Berlin: Springer-Verlag.MATHGoogle Scholar
  4. —, (1970), Credibility Procedures.Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability 1, 515–525.Google Scholar
  5. De Vijlder, FL., (1975),Introduction aux théories actuarielles de crédibilité. Office des assureurs de Belgique.Google Scholar
  6. Diaconis, P. andYlvisaker, D., (1979), Conjugate Priors for Exponential Families.Ann. Statist. 7, 269–281.MATHCrossRefMathSciNetGoogle Scholar
  7. Dickey, J.M., (1969), Smoothing by Cheating.Ann. Math. Stat. 40, 1477–1482.MATHCrossRefMathSciNetGoogle Scholar
  8. Doob, J.L., (1953),Stochastic Processes. New York: Wiley.MATHGoogle Scholar
  9. Ericson, W.A., (1969), A note on the Posterior Mean a Population Mean.J. Roy. Statist. Soc. B,31, 332–334.MathSciNetGoogle Scholar
  10. —, (1969), On the Posterior Mean and Variance of a Population Mean.J. Amer. Statist. Assoc. 65, 649–652.CrossRefGoogle Scholar
  11. Finucan, H.M., (1971), Posterior precision for Non-Normal Distribution.J. Roy. Statist. Soc. B,33, 95–97.MATHGoogle Scholar
  12. Goel, P.K. (1979), Linear Posterior Expectation in a Scale Parameter Family and the Gamma Distribution.Technical Report 163. Department of Statistics, Carnegie-Mellon University.Google Scholar
  13. Goel, P., andDeGroot, H.M., (1979), Only Normal Distribution have Linear Posterior Expectations in Linear Regression.Technical Report 157, Department of Statistics, Carnegie-Mellon University.Google Scholar
  14. Goldstein, M., (1975a), Approximate Bayes Solutions to Some Non-Parametric Problems.Ann. Statist. 3, 512–517.MATHCrossRefMathSciNetGoogle Scholar
  15. — (1975b), A Note on Some Bayesian Non-Parametric Estimates.Ann. Statist. 3, 736–740.MATHCrossRefMathSciNetGoogle Scholar
  16. — (1976), Bayesian Analysis of Regression Problems.Biometrika,63, 51–58.MATHCrossRefMathSciNetGoogle Scholar
  17. Hartigan, J.A., (1969), Linear Bayesian Methods,J. Roy. Statist. Soc. B,31, 446–454.MATHMathSciNetGoogle Scholar
  18. Hewitt, E., andSavage, L., (1955), Symmetric Measures on Cartesian Products.Trans. Amer. Math. Soc. 80, 470–501.MATHCrossRefMathSciNetGoogle Scholar
  19. Jewell, S.W., (1974a), The Credible Distribution.ASTIN Bulletin 7, 237–269.MathSciNetGoogle Scholar
  20. — (1974b), Credible Means are Exact Bayesian for Exponential Families.ASTIN Bulletin 8, 77–90.MathSciNetGoogle Scholar
  21. — (1974c), Exact Multidimensional Credibility.Mitt. der Verein. Schweiz. Versich-Math. 74, 193–314.Google Scholar
  22. Kagan, A., Linnik, Y.V. andRao, C.R., (1973),Characterizations Problems is Mathematical Statistics. New York: Wiley.Google Scholar
  23. Kahn, P.M., (1975),Credibility theory and Application. New York: Academic Press.Google Scholar
  24. Lukacs, E. andLaha, R.G. (1964),Applications of Characteristic Functions. London: Griffin.MATHGoogle Scholar
  25. Mayerson, A.L., (1964), A Bayesian View of Credibility.Proceedings of the Casualty Actuarial Society,51, 85–104.Google Scholar
  26. Raiffa, H. andSchlaifer, R., (1961),Applied Statistical Decision Theory. Harvard: University Press.Google Scholar
  27. Stone, M., (1963), Robustness of Non-Ideal Decision Procedures.J. Amer. Statist. Assoc. 58, 480–486.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1980

Authors and Affiliations

  • Michel Mouchart
    • 1
  • Léopold Simar
    • 2
  1. 1.Université Catholique de LouvainLouvainBelgium
  2. 2.Facultes Universitaires Saint LouisBruxellesBelgium

Personalised recommendations