Economic Botany

, Volume 45, Issue 3, pp 379–396 | Cite as

Races of common bean (Phaseolus vulgaris, Fabaceae)

  • Shree P. Singh
  • Paul Gepts
  • Daniel G. Debouck
Article

Abstract

Evidence for genetic diversity in cultivated common bean (Phaseolus vulgaris) is reviewed. Multivariate statistical analyses of morphological, agronomic, and molecular data, as well as other available information on Latin American landraces representing various geographical and ecological regions of their primary centers of domestications in the Americas, reveal the existence of two major groups of germplasm: Middle American and Andean South American, which could be further divided into six races. Three races originated in Middle America (races Durango, Jalisco, and Mesoamerica) and three in Andean South America (races Chile, Nueva Granada, and Peru). Their distinctive characteristics and their relationships with previously reported gene pools are discussed.

Key Words

Phaseolus vulgaris domestication crop plant evolution genetic diversity races of common bean gene pools 

Razas de Fríjol Común (Phaseolus vulgaris, Fabaceae)

Résumé

Se presenta una revisión sobre la evidencia de variabilidad genética en el fríjol cultivado (Phaseolus vulgaris). De acuerdo con los análisis estadísticos multivariados de datos morfológicos, agronómicos y moleculares y con información adicional disponible sobre variedades criollas de América Latina que representan varias regiones ecológicas y geográficas de sus centros primarios de domesticación en las Américas, se establece la existencia de los dos grupos principales de germoplasma: los de Mesoamérica y de los Andes suramericanos; los cuales pueden ser divididos en seis razas. Tres razas se originaron en Mesoamérica (razas Durango, Jalisco y Mesoamérica) y tres los Andes suramericanos (razas Chile, Nueva Granada y Perú). Se discuten sus características distintivas y sus relaciones con otros acervos de genes reportados anteriormente.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Brown, J. W. S., Y. Ma, F. A. Bliss, and T. C. Hall. 1981. Genetic variation in the subunits of globulin-1 storage protein of French bean. Theor. Appl. Genet. 59:83–88.Google Scholar
  2. Brücher, H. 1988. The wild ancestor ofPhaseolus vulgaris in South America. Pages 185–214in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  3. Brunner, B. R., and J. S. Beaver. 1988. Estimation of outcrossing of dry beans in Puerto Rico. Ann. Rep. Bean Improv. Coop. 31:42–43.Google Scholar
  4. Bukasov, S. M. 1930. The cultivated plants of Mexico, Guatemala and Colombia. Bull. Appl. Bot. Genet. Pl. Breed., Leningrad, Supplem. 47:1–553.Google Scholar
  5. Burkart, A., and H. Brücher. 1953.Phaseolus aborigineus Burkart, die mutmassliche andine Stammform der Kulturbohne. Züchter 23:65–72.CrossRefGoogle Scholar
  6. Correa-Victoria, F. J. 1987. Pathogenic variation, production of toxic metabolites, and isoenzyme analysis inPhaeoisariopsis griseola (Sacc.) Ferr. Ph.D. dissertation, Michigan State University, East Lansing.Google Scholar
  7. Coyne, D. P. 1965. A genetic study of “crippled” morphology resembling virus symptoms inPhaseolus vulgaris L. J. Hered. 56:162–163.Google Scholar
  8. Debouck, D.G. 1989. Early beans(Phaseolus vulgaris L. andP. lunatus L.) domesticated for their aesthetic value? Ann. Rep. Bean Improv. Coop. 32: 62–63.Google Scholar
  9. — 1990. Wild beans as a food resource in the Andes. Ann. Rep. Bean Improv. Coop. 33:102–103.Google Scholar
  10. — 1991. Systematics and morphology. Pages 55–118in A. van Schoonhoven and O. Voysest, eds., Common beans: research for crop improvement. C.A.B. Int., Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  11. —,M. Gamarra F., V. Ortiz A., and J. Tohme. 1989. Presence of a wild-weed-crop complex inPhaseolus vulgaris L. in Peru? Ann. Rep. Bean Improv. Coop. 32:64–65.Google Scholar
  12. —,and R. Hidalgo. 1986. Morphology of the common bean plant. Study guide. CIAT, Cali, Colombia: 16–25.Google Scholar
  13. —,H. Rubiano, and M. del Carmen Menéndez S. 1988. Determinate climbers among Argentinean materials ofPhaseolus vulgaris L. Ann. Rep. Bean Improv. Coop. 31:189–190.Google Scholar
  14. —,and J. Tohme. 1989. Implications for bean breeders of studies on the origins of common beans,Phaseolus vulgaris L. Pages 3–42in S. Beebe, ed., Current topics in breeding of common bean. Working document no. 47. CIAT, Cali, Colombia.Google Scholar
  15. Delgado Salinas, A., A. Bonet, and P. Gepts. 1988. The wild relative ofPhaseolus vulgaris in Middle America. Pages 163–184in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  16. Evans, A. 1970. Heterosis for yield inPhaseolus vulgaris crosses. Ann. Rep. Bean Improv. Coop. 13: 52–54.Google Scholar
  17. — 1973. Exploitation of the variability in plant architecture inPhaseolus vulgaris. Pages 279–286in D. Wall, ed., Potentials of field beans and other food legumes in Latin America. Series Seminar 2E. CIAT, Cali, Colombia.Google Scholar
  18. — 1980. Structure, variation, evolution, and classification inPhaseolus. Pages 337–347in R. J. Summerfield and A. H. Bunting, eds., Advances in legume science. HMSO, Royal Botanic Gardens, Kew, London.Google Scholar
  19. Gentry, H. S. 1969. Origin of the common bean,Phaseolus vulgaris. Econ. Bot. 23:55–69.Google Scholar
  20. Gepts, P. 1988a. Phaseolin as an evolutionary marker. Pages 215–241in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  21. — 1988b. A Middle American and an Andean common bean gene pool. Pages 375–390in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  22. — 1990. Biochemical evidence bearing on the domestication ofPhaseolus (Fabaceae) beans. Econ. Bot. 44(supplement):28–38.Google Scholar
  23. —,and F. A. Bliss. 1985. F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J. Hered. 76:447–150.Google Scholar
  24. —,and —. 1986. Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ. Bot. 40:469–478.Google Scholar
  25. —,and D. Debouck. 1991. Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). Pages 7–53in A. van Schoonhoven and O. Voysest, eds., Common beans: research for crop improvement. C.A.B. Int., Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  26. —,T. C. Osborn, K. Rashka, and F. A. Bliss. 1986. Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ. Bot. 40:451–468.Google Scholar
  27. Harlan, J. R. 1975. Geographic patterns of variation in some cultivated plants. J. Hered. 66:184–191.Google Scholar
  28. Harmsen, R., F. A. Bliss, and T. C. Osborn. 1987. Breeding beans resistant to bruchids. Ann. Rep. Bean Improv. Coop. 30:44–45.Google Scholar
  29. Heiser, C. B. 1979. Origin of some cultivated New World plants. Ann. Rev. Ecol. Syst. 10:309–326.CrossRefGoogle Scholar
  30. Hidalgo, R. 1991. CIAT’s worldPhaseolus collection. Pages 163–197in A. van Schoonhoven and O. Voysest, eds., Common beans: research for crop improvement. C.A.B. Int., Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  31. Kaplan, L. 1965. Archaeology and domestication in AmericanPhaseolus (beans). Econ. Bot. 19:358–368.Google Scholar
  32. — 1981. What is the origin of the common bean? Econ. Bot. 35:240–254.Google Scholar
  33. —,and L. N. Kaplan. 1988.Phaseolus in archaeology. Pages 125–142in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  34. Khairallah, M. M., M. W. Adams, and B. B. Sears. 1990. Mitochondrial DNA polymorphisms of Malawian bean lines: further evidence for two major gene pools. Theor. Appl. Genet. 80:753–761.CrossRefGoogle Scholar
  35. Koenig, R. L., and P. Gepts. 1989a. Allozyme diversity in wildPhaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor. Appl. Genet. 78:809–817.CrossRefGoogle Scholar
  36. —,and —. 1989b. Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris). J. Hered. 80:455–459.Google Scholar
  37. —,S.P. Singh, and P. Gepts. 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 44:50–60.Google Scholar
  38. Leakey, C. L. A. 1988. Genotypic and phenotypic markers in common bean. Pages 245–327in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  39. Lioi, L., M. Esquivel, L. Castiñeiras, and K. Hammer. 1990. Phaseolin variation among common bean landraces from Cuba. Biol. Zentr. Bl. 109:231–233.Google Scholar
  40. Ma, Y., and F. A. Bliss. 1978. Seed proteins of common bean. Crop Sci. 18:431–437.Google Scholar
  41. Maréchal, R., J. M. Mascherpa, and F. Stainier. 1978. Etude taxonomique d’un groupe complexe d’espèces des genresPhaseolus etVigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28:1–273.Google Scholar
  42. Miranda Colin, S. 1967. Origen dePhaseolus vulgaris L. (frijol común). Agrociencia 1:99–109.Google Scholar
  43. Mmbaga, M. T., and J. R. Steadman. 1990. Adult plant rust resistance and leaf pubescence on dry beans. Ann. Rep. Bean Improv. Coop. 33:61–62.Google Scholar
  44. Morales, F. J., and S. P. Singh. 1991. Genetics of resistance to bean golden mosaic virus inPhaseolus vulgaris L. Euphytica 52:113–117.Google Scholar
  45. Motto, M., G. P. Sorresi, and F. Salamini. 1978. Seed size inheritance in a cross between wild and cultivated common beans (Phaseolus vulgaris L.). Genetica 49:31–36.CrossRefGoogle Scholar
  46. Nabhan, G. P., J. S. Muruaga M..F. Cárdenas R., and B. T. Burns. 1986. Wild bean explorations in northwest Mexico and southwest USA. Plant Genet. Resour. Newsl. 65:23–25.Google Scholar
  47. Nienhuis, J., and S. P. Singh. 1988. Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle-American origin. I. General combining ability. Plant Breed. 101:143–154.CrossRefGoogle Scholar
  48. Ortega V., S. 1974. Polinización cruzada natural de la caraota(P. vulgaris L.) en Venezuela. Agronomía Tropical (Venezuela) 24:27–32.Google Scholar
  49. Pereira Filho, I. A., and C. Cavariani. 1984. Taxa de hibridação natural do feijoeiro comum em Patos de Minas, Minas Gerais. Pes. Agrop. Bras. 19:1181–1183.Google Scholar
  50. Rutger, J. N., and L. S. Beckham. 1970. Natural hybridization ofPhaseolus vulgaris L. xPhaseolus coccineus L. J. Am. Soc. Hort. Sci. 95:659–661.Google Scholar
  51. Schwartz, H. F., M. A. Pastor-Corrales, and S. P. Singh. 1982. New sources of resistance to anthracnose and angular leaf spot of beans (Phaseolus vulgaris L.). Euphytica 31:741–754.CrossRefGoogle Scholar
  52. Shaik, M., and J. R. Steadman. 1988. Nonspecific resistance to bean rust and its association with leaf pubescence. Ann. Rep. Bean Improv. Coop. 31:62–63.Google Scholar
  53. Shii, C. T., M. C. Mok, S. R. Temple, and D. W. S. Mok. 1980. Expression of developmental abnormalities in hybrids ofPhaseolus vulgaris. J. Hered. 71:218–222.Google Scholar
  54. Singh, S. P. 1982. A key for identification of different growth habits ofPhaseolus vulgaris L. Ann. Rep. Bean Improv. Coop. 25:92–95.Google Scholar
  55. — 1988. Gene pools in cultivated dry bean. Ann. Rep. Bean Improv. Coop. 31:180–182.Google Scholar
  56. — 1989. Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 43:39–57.Google Scholar
  57. — 1990. Bridging-parents for incompatible crosses between Mesoamerican and Andean common beans. Ann. Rep. Bean Improv. Coop. 33:111.Google Scholar
  58. — 1991a. Bean genetics. Pages 199–286in A. van Schoonhoven and O. Voysest, eds., Common beans: research for crop improvement. C.A.B. Int., Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  59. — 1991b. Breeding for seed yield. Pages 383–443in A. van Schoonhoven and O. Voysest, eds., Common beans: research for crop improvement. C.A.B. Int., Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  60. —,C. Cajiao, J. A. Gutiérrez, J. García, M. A. Pastor-Corrales, and F. J. Morales. 1989a. Selection for seed yield in inter-gene pool crosses of common bean. Crop Sci. 29:1126–1131.Google Scholar
  61. —,D. G. Debouck, and P. Gepts. 1989b. Races of common bean,Phaseolus vulgaris L. Pages 75–89in S. Beebe, ed., Current topics in breeding of common bean. Working document no. 47. CIAT, Cali, Colombia.Google Scholar
  62. —, —,and C. A. Urrea. 1990. Variation for bracteoles and its association with races of common bean. Ann. Rep. Bean Improv. Coop. 33:112.Google Scholar
  63. —,and J. A. Gutié 1984. Geographical distribution of theDl 1 andDl 2 genes causing hybrid dwarfism inPhaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33:337–345.CrossRefGoogle Scholar
  64. —,and —. 1990. Effect of plant density on selection for seed yield in two population types ofPhaseolus vulgaris L. Euphytica 51:173–178.Google Scholar
  65. —, —,A. Molina, C. Urrea, and P. Gepts. 1991a. Genetic diversity in cultivatedPhaseolus vulgaris. II. Marker-based analysis of morphological and agronomic traits. Crop Sci. 31:23–29.Google Scholar
  66. —,and A. Molina. 1991. Occurrence of deformed leaflets (virus-like symptoms) in segregating generations of interracial populations of common bean. Ann. Rep. Bean Improv. Coop. 34:134–135.Google Scholar
  67. —,R. Nodari, and P. Gepts. 1991b. Genetic diversity in cultivatedPhaseolus vulgaris. I. Allozymes. Crop Sci. 31:19–23.Google Scholar
  68. -,M. A. Pastor-Corrales, A. Molina, C. Urrea, and C. Cajiao. 1991c. Independent, alternate, and simultaneous selection for resistance to anthracnose and angular leaf spot and effects on seed yield in common bean (Phaseolus vulgaris L.). Plant Breed. 104:in press.Google Scholar
  69. —,C. A. Urrea, J. A. Gutiérrez, and J. García. 1989c. Selection for yield at two fertilizer levels in small-seeded common bean. Can. J. Plant Sci. 69:1011–1017.CrossRefGoogle Scholar
  70. Smartt, J. 1988. Morphological, physiological and biochemical changes inPhaseolus beans under domestication. Pages 143–161in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  71. — 1990a. The evolution of agriculturally significant legumes. Plant Breed. Abstr. 60:725–731.Google Scholar
  72. — 1990b. Grain legumes—evolution and genetic resources. Cambridge Univ. Press, Cambridge, UK.Google Scholar
  73. Sprecher, S. L. 1988. New isozyme variants at two NADH diaphorase loci in dry beans: correlations to gene pools and commercial classes. Ann. Rep. Bean Improv. Coop. 31:92.Google Scholar
  74. —,and T. G. Isleib. 1989. Morphological and phenological diversity between bean gene pools. Ann. Rep. Bean Improv. Coop. 32:54–55.Google Scholar
  75. —,and M. Khairallah. 1989. Association of male sterility with gene pool recombinants in bean. Ann. Rep. Bean Improv. Coop. 32:56–57.Google Scholar
  76. Stavely, J.R. 1990. Recent progress toward obtaining rust resistant beans. Ann. Rep. Bean Improv. Coop. 33:63–64.Google Scholar
  77. Stoetzer, H. A. I. 1984. Natural cross-pollination in bean in Ethiopia. Ann. Rep. Bean Improv. Coop. 27:99–100.Google Scholar
  78. Toro, O., J. Tohme, and D. G. Debouck. 1990. Wild bean (Phaseolus vulgaris L.): description and distribution. IBPGR and CIAT, Cali, Colombia.Google Scholar
  79. Tucker, C. L., and J. Harding. 1975. Outcrossing in common bean,Phaseolus vulgaris L. J. Am. Soc. Hort. Sci. 100:283–285.Google Scholar
  80. Urrea, C. A., and S. P. Singh. 1991. Variation for leaflet shape in wild and cultivated landraces of common bean. Ann. Rep. Bean Improv. Coop. 34: 133.Google Scholar
  81. Vanderborght, T. 1983. Evaluation ofP. vulgaris wild types and weedy forms. Plant Genet. Resour. Newsl. 54:18–25.Google Scholar
  82. — 1987. The study of common bean (Phaseolus vulgaris L.) variability by the use of multivariate statistical methods applied to a database. Diss. Abstr. 47:3190B-3191B.Google Scholar
  83. Vargas, J., J. Tohme, and D. G. Debouck. 1990. Common bean domestication in the southern Andes. Ann. Rep. Bean Improv. Coop. 33:104–105.Google Scholar
  84. Vieira, A. L., M. A. Patto Ramalho, and J. B.dos Santos. 1989. Crossing incompatibility in some bean cultivars utilized in Brazil. Rev. Brasil. Genet. 12:169–171.Google Scholar
  85. Vieira, C. 1960. Sobre a hibridação natural emPhaseolus vulgaris L. Revista Ceres. 11:103–107.Google Scholar
  86. Voysest, O. 1983. Variedades de frijol en América Latina y su origen. CIAT, Cali, Colombia.Google Scholar
  87. —,and M. Dessert. 1991. Bean cultivars: classes and commercial seed types. Pages 119–162in A. van Schoonhoven and O. Voysest, eds., Common beans: research for crop improvement. C.A.B. Int., Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  88. Weiseth, G. 1954. Una variedad silvestre del poroto común(Phaseolus vulgaris), autoctóna del Noroeste Argentino y su relación genética con variedades cultivadas. Rev. Agron. Noroeste Argentino 1:71–81.Google Scholar
  89. Wells, W. C., W. H. Isom, and J. G. Waines. 1988. Outcrossing rates of six common bean lines. Crop Sci. 28:177–178.Google Scholar
  90. White, J. W., and A. González. 1990. Characterization of the negative association between seed yield and seed size among genotypes of common bean. Field Crops Res. 23:159–175.CrossRefGoogle Scholar
  91. —,and J. Izquierdo. 1991. Physiology of yield potential and stress tolerance. Pages 287–382in A. van Schoonhoven and O. Voysest, eds., Common beans: research for crop improvement. C.A.B. Int., Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  92. -,S. P. Singh, C. Pino, M. J. Rios B., and I. Buddenhagen. 1991. Effects of seed size and photoperiod response on crop growth and yield of common bean. Field Crops Res. 28:in press.Google Scholar

Copyright information

© New York Botanical Garden, Bronx, NY 10458 U.S.A 1991

Authors and Affiliations

  • Shree P. Singh
    • 1
  • Paul Gepts
    • 2
  • Daniel G. Debouck
    • 3
  1. 1.Bean Program, CIATCali
  2. 2.Department of Agronomy and Range SciencesUniversity of CaliforniaDavisUSA
  3. 3.IBPGRRome

Personalised recommendations