Advertisement

Journal of Clinical Monitoring

, Volume 10, Issue 2, pp 127–133 | Cite as

Agreement Between Large And Small Cuffs In Sphygmomanometry: A Quantitative Assessment

  • Yuruk Iyriboz
  • Christopher M. Hearon
  • Kathleen Edwards
Original article

Abstract

Objective. The objective of this study is to quantify agreement and differences between blood pressure (BP) measurements by large cuffs (15 X 33 cm) and small cuffs (12 X 23 cm) in a representative sample of the U.S. population with varying arm circumferences. Methods. The arm circumference and blood pressure (12 readings of each) of 85 subjects were measured, the latter with a mercury column sphygmo-manometer. Data were classified according to arm circumference (small arm circumference, ≤ 29 cm; large arm circumference, > 29 cm). Results were submitted to ANOVA, linear regression, difference between means (aggregate agreement), upper and lower limits of agreement at 95% confidence intervals, and intraclass correlation (individual-subject agreement/ quantification of agreement). Results. Small cuffs overestimated BP obtained from the large cuffs for the sample population as a whole, regardless of arm circumference. Limits of agreement at the lower end of 95% confidence interval were not clinically acceptable (SBP -1.56 to 11.05 mm Hg; DBP-2.06 to 8.63 mm Hg). However, measurements by both cuffs agreed among subjects with small arm circumferences (≤ 29 cm). Conclusion. Arm circumference plays an important role in determining proper cuff size for BP measurement. The small cuff overestimates BP in patients with large arm circumferences (> 29 cm), which represents more than 75% of the U.S. adult population. However, measurements of BP with the large cuff are not significantly different from those of small cuff measurements in subjects with small arm circumferences (≤ 29 cm). Therefore, we propose that the large cuff be used for routine BP measurement of the adults in the United States.

Key words

Blood pressure measurement Equipment cuffs 

Abstract

Ziel. Ziel dieser Untersuchung ist die Quantifizierung der Ubereinstimmung bzw. Abweichungen von Blutdruckmessungen mit großen Manschetten (15 cm X 33 cm) (GM) und kleinen Manschetten (12 cm x 23 cm) (KM) an einer reprasentativen Gruppe der amerikanischen Bevölkerung mit variierendem Armumfang. Methoden. Der Armumfang und Blutdruck (BP) (jeweils 12 Werte) von 85 Personen wurden gemessen, letzterer mit einem Quecksilbersaulen-Sphygmomanometer. Die Daten wurden hinsichtlich des Armumfangs klassifiziert (kleiner Armumfang < 29 cm, großer Armumfang (> 29 cm). Die Ergebnisse wurden analy-siert mittels ANOVA, linearer Regression, Differenz der Mit-telwerte (aufsummierte Übereinstimmung), obere und untere Grenze der Übereinstimmung bei 95% Konfidenzintervall und der Korrelation in den Klassen (Einzelpersonen Übereinstimmung/Quantifizierung der Ubereinstimmung). Ergebnisse. Unabhängig vom Armdurchmesser ergaben für die Versuchspersonen insgesamt die Messungen mit kleinen Manschetten überhöhte Blutdruckwerte verglichen mit den mit großen Manschetten gewonnenen Werten. Die Grenzen der Ubereinstimmung am unteren Ende des 95%- Konfiden-zintervalls waren klinisch nicht akzeptabel (BP sys - 1,56 bis 11,05 Torr, BP dia-2,06 bis 8,63 Torr). Jedoch stimmten die Ergebnisse von Messungen beider Manschetten bei Personen mit kleinem Armumfang (< 29 cm) überein. Schlußfolgerung. Der Armumfang spielt eine wichtige Rolle bei der Festlegung der richtigen Manschettengrößefr Blutdruck-messung. Kleine Manschetten führen zu überhöhten Blutdruckwerten bei Patienten mit großem Armumfang (> 29 cm), welche mehr als 75% der amerikanischen erwach-senen Bevölkerung repräsentieren. Bei Patienten mit kleinem Armumfang (< 29 cm) jedoch ergaben BP-Messungen mit großer Manschette keine signifikant abweichenden Werte von Messungen mit kleiner Manschette. Wir schlagen deshalb vor, große Manschetten bei Routine-Blutdruckmessungen an Er-wachsenen in den USA anzuwenden.

Resumen

Objetivo. El objetivo de este estudio es cuantificar la concordancia y las diferencias entre mediciones de presión arterial (BP) obtenidas usando manguito grande (15 por 33 cm) (LC) y manguito pequeño (12 por 23 cm) (SC) en una muestra representativa de la población de U.S.A. con circunferencia de brazo (AC) variable. Métodos. Se midió la circunferencia del brazo y la presión arterial mediante esfigmomanómetro de columna de mercurio (12 lecturas de cada una) de 85 sujetos. Las mediciones se clasificaron de acuerdo a la circunferencia del brazo rcunferencia de brazo pequena (SAC), < 29cm; circunferencia de brazo grande (LAC), > 29cm. Los resultados se analizaron mediante ANOVA, regresión lineal, diferencia entre promedios (concordancia de agregados), limites superior e inferior de concordancia en los intervalos de confianza de 95%, y correlatión entre clases (concordancia de sujeto individual/cuantificación de concordancia). Resultados. Los manguitos pequeños sobreestimaron BP obtenida de LC para la población como un todo, independientemente de AC. Los límites de concordancia en el extremo inferior del intervalo de confianza de 95% no fueron clinicamente aceptables (SBP -1.56 a 11.05 mmHg; DBP -2.06 a 8.63 mmHg). Sin embargo, mediciones por ambos manguitos coincidieron entre sujetos con SAC (< 29cm). Conclusión. La circunferencia del brazo juega un rol importante en determinar el tamaño apropiado de manguito para medición de BP. Manguitos pequeños sobreestiman BP en pacientes con LAC (> 29cm), lo cual representa más del 75% de la poblacion adulta de U.S.A. Sin embargo, mediciones de BP con LC no resultaron significativamente diferentes de aquellas realizadas con SC en sujetos con SAC (< 29cm). Por lo tanto, proponemos que LC sean usados para la medición rutinaria de BP en al población adulta de U.S.A.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Recklinghausen H. Ueber Blutdruckmessung beim Menshen. Arch Exp Path Pharmakol 1901;46:78–132CrossRefGoogle Scholar
  2. 2.
    Karvonen MJ, Telivuo LJ, Jarvinen EJK. Sphygmoma-nometer cuff size and accuracy of indirect blood pressure measurement. Am J Cardiol 1964;13:688–693PubMedCrossRefGoogle Scholar
  3. 3.
    Simpson JA, Jamieson G, Dickhaus DW, Grover RF. Effect of size of cuff bladder on accuracy of measurement of indirect blood pressure. Am Heart J 1965;70(2):208–215PubMedCrossRefGoogle Scholar
  4. 4.
    King GE. Errors in clinical measurement of blood pressure in obesity. Clin Sci 1967;32:223–237PubMedGoogle Scholar
  5. 5.
    Whincup, PH, Cook DG, Shaper, AG. Blood pressure measurement in children: The importance of cuff bladder size. J Hypertens 1989;7:845–850PubMedCrossRefGoogle Scholar
  6. 6.
    Maxwell MH, Waks AU, Schroth PC, et al. Errors in blood pressure measurement due to incorrect cuff size in obese patients. Lancet 1982;2:33–36PubMedCrossRefGoogle Scholar
  7. 7.
    Russell AE, Wing LMH, Smith SA, et al. Optimal size of cuff bladder for indirect measurement of arterial blood pressure in adults. J Hypertens 1989;7:607–613PubMedCrossRefGoogle Scholar
  8. 8.
    Croft PR, Cruickshank JK. Blood pressure measurement in adults: Large cuff for all? J Epidemiol Community Health 1990;44:170–173PubMedCrossRefGoogle Scholar
  9. 9.
    Karvonen MJ. Effect of sphygmomanometer cuff size on blood pressure measurement. Bull World Health Organ 1962;27:805–808Google Scholar
  10. 10.
    Arcuri EAM, Santos JLF, Silva MRE. Is early diagnosis of hypertension a function of cuff width? J Hypertens 1989;7(Suppl 6):S60-S61Google Scholar
  11. 11.
    Burch GE, Shewey L. Sphygmomanometric cuff size and blood pressure readings. JAMA 1973;225:1215–1218PubMedCrossRefGoogle Scholar
  12. 12.
    Lehane A, O’Brien ET, O’Malley K. Reporting of blood pressure data in medical journals. Br Med J 1980;281: 1603–1604PubMedGoogle Scholar
  13. 13.
    Roche V, O’Malley K, O’Brien E. How “scientific” blood pressure is measured in leading medical journals. J Hypertens 1990;8:1167–1168PubMedCrossRefGoogle Scholar
  14. 14.
    Sloan PJM, Zezulka A, Davies P, et al. Standardized methods for comparison of sphygmomanometers. J Hypertens 1984;2:547–551PubMedCrossRefGoogle Scholar
  15. 15.
    Association for the Advancement of Medical Instrumentation. American national standard nonautomated sphygmomanometers (ANSI/AAMI Report No SP9-1985). Arlington, VA: American National Standards Institute, 1986:1–11Google Scholar
  16. 16.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical management. Lancet 1986; 1:307–310PubMedGoogle Scholar
  17. 17.
    Constant J. Accurate blood pressure measurement. Postgrad Med J 1987;18:73–86Google Scholar
  18. 18.
    Lee J, Koh D, Ong CN. Statistical evaluation of agreement between two methods for measuring a quantitative variable. Comput Biol Med 1989;19(l):61–70PubMedCrossRefGoogle Scholar
  19. 19.
    O’Brien E, Mee F, Atkins N, O’Malley K. The quest for better validation: A critical comparison of the AAMI and BHS validation protocols for ambulatory blood pressure measurement systems. Biomed Inst Tech 1992;26:395399Google Scholar
  20. 20.
    Frohlich ED, Grim C, Labarthe DR, et al. Recommendations for human blood pressure determination by sphygmomanometer: AHA committee report. Hypertension 1988;ll:210A-222AGoogle Scholar
  21. 21.
    Iyriboz Y, Hearon C. Blood pressure measurement at rest and during exercise: Controversies, guidelines and procedures. J Cardiopulm Rehab 1992;12:277–287CrossRefGoogle Scholar
  22. 22.
    Kirkendall WM, Feinlab, M, Feis, EP, Mark AL. Recommendations for human blood pressure determination by sphygmomanometer: AHA committee report. Circulation 1980;62:1146A-1155APubMedGoogle Scholar
  23. 23.
    Yong PG, Geddes LA. The effect of cuff pressure deflation rate on accuracy in indirect measurement of blood pressure with the auscultative method. J Clin Monit 1987;3:155–156PubMedCrossRefGoogle Scholar
  24. 24.
    Curb JD, Labarthe DR, Cooper SP, et al. Training and certification of blood pressure observers. Hypertension 1984;5:610–614Google Scholar
  25. 25.
    Schein J. Monitoring your blood pressure at home. Consumers’ Research 1987;70:31–34Google Scholar
  26. 26.
    U.S. Department of HHS, PHS and NCHS. Anthropometric reference data and prevalence of overweight U.S., 1976-80 (Report No 238). Hyattsville, MD: The National Health Survey Services (DHHS Publication No (PHS) 87-1688), 1987:46–47Google Scholar
  27. 27.
    Petrie JC, O’Brien ET, Littler, WA, de Swiet M. British Hypertension Society: Recommendations on blood pressure measurement. BMJ 1986;293:611–615PubMedGoogle Scholar
  28. 28.
    Kaplan NM. Clinical hypertension, 4th ed. Baltimore: Williams and Wilkins, 1986:21–45Google Scholar
  29. 29.
    Borhani NO, White WB. Effect of arm position on blood pressure measurement. JAMA 1987;258:1962Google Scholar
  30. 30.
    Burdock, EL, Fleiss JL, Hardesty AS. A new view of interobserver agreement. Perspect Psychol 1963; 16:373–384CrossRefGoogle Scholar
  31. 31.
    Nielson PE. Technical equipment for blood pressure recording. Acta Med Scand Suppl 1982;670:57–61Google Scholar
  32. 32.
    Rastam L, Prineas RJ, Gomez-Martin O. Ratio of cuff width/arm circumference as a determinant of arterial blood pressure measurement in adults. J Int Med 1990; 227:225–232CrossRefGoogle Scholar
  33. 33.
    Manning DM, Kuchirka C, Kaminsky J. Miscuffing. Inappropriate blood pressure cuff application. Circulation 1983;68:763–766PubMedGoogle Scholar
  34. 34.
    Scherwitz LW, Evans LA, Hennrikus DJ, Vallbona C. Procedures and discrepancies of blood pressure measurements in two community health centers. Med Care 1982;20:727–738PubMedCrossRefGoogle Scholar
  35. 35.
    Geddes LA, Whistler SJ. The error in indirect blood pressure measurement with the incorrect size of cuff. Am Heart J 1978;96:4–8PubMedCrossRefGoogle Scholar
  36. 36.
    Geddes LA, Tivey R. The importance of cuff width in measurement of blood pressure indirectly. Cardiovas Res Cent Bull 1976;14:69–79Google Scholar
  37. 37.
    Alexander, H, Cohen ML, Steinfeld L. Criteria in the choice of an occluding cuff for the indirect measurement of blood pressure. Med Biol Eng Comput 1977;15:2–10PubMedCrossRefGoogle Scholar

Copyright information

© Little, Brown and Company 1994

Authors and Affiliations

  • Yuruk Iyriboz
    • 1
  • Christopher M. Hearon
    • 1
  • Kathleen Edwards
    • 1
  1. 1.Department of KinesiologyLouisiana State UniversityBaton RougeLA

Personalised recommendations