Chinese Science Bulletin

, Volume 45, Issue 23, pp 2118–2125 | Cite as

The nature of the solar activity during the Maunder Minimum revealed by the Guliya ice core record

  • Ninglian Wang
  • L. G. Thompson
  • J. Cole-Dai
Papers

Abstract

Whether the solar activity was very low, and especially whether the solar cycle existed, during the Maunder Minimum (1645–1715 AD), have been disputed for a long time. In this paper we use the Guliya NO3 data, which can reflect the solar activity, to analyze the characteristics of the solar activity during the Maunder Minimum. The results show that the solar activity was indeed low, and solar cycle displayed normal as present, i.e. about 11a, in that period. Moreover, it was found that the solar activity contains a 36-year periodic component probably, which might be related to the variations in the length of the sunspot cycle. This finding is of importance for the study of the relationship between the sun variability and the Earth climate change.

Keywords

Maunder Minimum solar activity Guliya ice core 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yao Tandong, Thompson, L. G., Qin Dahe et al., Variations in temperature and precipitation in the past 2000 a on the Xizang (Tibet) Plateau—Guliya ice core record, Science in China, Ser. D, 1996, 39(4): 425.Google Scholar
  2. 2.
    Stuiver, M., Braziunas, T. F., Grootes, P. M., Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record? Quaternary Research, 1997, 48(2): 259.CrossRefGoogle Scholar
  3. 3.
    Sinclair, A. R. E., Gosline, J. M., Holdsworth, G. et al., Can the solar cycle and climate sychronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores, The American Naturalist, 1993, 141(2): 173.CrossRefPubMedGoogle Scholar
  4. 4.
    Yu Zicheng, Ito, E., Possible solar forcing of century-scale drought frequency in the northern Great Plains, Geology, 1999, 27(3): 263.CrossRefGoogle Scholar
  5. 5.
    Haigh, J. D., The impact of solar variability on climate, Science, 1996, 272(5264): 981.PubMedCrossRefGoogle Scholar
  6. 6.
    Shindell, D., Rind, D., Balachandran, N. et al., Solar cycle variability, ozone, and climate, Science, 1999, 284 (5412): 305.PubMedCrossRefGoogle Scholar
  7. 7.
    Christoforou, P., Hameed, S., Solar cycle and the Pacific “centers of action”, Geophysical Research Letters, 1997, 24(3): 293.CrossRefGoogle Scholar
  8. 8.
    Robock, A., Stratospheric control of climate, Science, 1996, 272(5264): 972.CrossRefGoogle Scholar
  9. 9.
    Hoyt, D. V., Schatten, K. H., The Role of the Sun in Climate Change, Oxford: Oxford University Press, 1997, 1–279.Google Scholar
  10. 10.
    van Geel, B., Raspopov, O. M., Renssen, H. det al., The role of solar forcing upon climate change, Quaternay Science Reviews, 1999, 18(3): 331.CrossRefGoogle Scholar
  11. 11.
    Yao Tandong, Xie Zichu, Wu Xiaoling et al., Climatic change since Little Ice Age recorded by Dunde Ice Cap, Science in China, Ser. B, 1991, 34(6): 760.Google Scholar
  12. 12.
    Yao Tandong, Thompson, L. G., Trends and features of climatic changes in the past 5 000 years recorded by the Dunde ice core, Annals of Glaciology, 1992, 16: 21–24.Google Scholar
  13. 13.
    Yao Tandong, Thompson, L. G., Shi Yafeng et al., Climate variation since the Last Interglaciation recorded in the Guliya ice core, Science in China, Ser. D, 1997, 40(6): 662.Google Scholar
  14. 14.
    Thompson, L. G., Mosley-Thompson, E., Davis, M. E. et al., Late glacial stage and Holocene tropical ice core records from Huscaran, Peru. Science, 1995, 269(5220): 46.PubMedCrossRefGoogle Scholar
  15. 15.
    Thompson, L. G., Davis, M. E., Mosley-Thompson, E. et al., A 25 000-year tropical climate history from Bolivian ice cores, Science, 1998, 282: 1858.PubMedCrossRefGoogle Scholar
  16. 16.
    Ice Core Working Group, Ice core contributions to global change research: past successes and future directions, University of New Hampshire, The National Ice Core Laboratory—Science Management Office, 1998, 1–48.Google Scholar
  17. 17.
    Petit, J. R., Jouzel, L., Raynaud, D. et al., Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 1999, 399(6735): 429.CrossRefGoogle Scholar
  18. 18.
    Wang Ninglian, Yao Tandong, Thompson, L. G., Concentration of nitrate in the Guliya ice core from the Qinghai-Xizang Plateau and the solar activity, Chinese Science Bulletin, 1999, 43(10): 841.Google Scholar
  19. 19.
    Wang Ninglian, Yao Tandong, Thompson, L. G., Variation and environmental implication of nitrate concentration in Guliya ice core in the recent 1 500 years, Journal of Glaciology and Geocryology (in Chinee with English abstract), 1998, 20(1): 14.Google Scholar
  20. 20.
    Eddy, J. A., The Maunder Minimum, Science, 1976, 192(4245): 1189.PubMedCrossRefGoogle Scholar
  21. 21.
    Xu Zhentao, Jiang Yaotiao, The solar activity of the 17th century viewed in the light of the sunspot records in the local topographies of China, Journal of Nanjing University (Natural Science edition) (in Chinese with English abstract), 1979, 15(2): 31.Google Scholar
  22. 22.
    Landsberg, H. E., Variable solar emissions, the “Maunder Minimum” and climatic temperature fluctuations, Archiv fur Meteorologie Geophysik und Bioklimatologie, 1980, 28(B1): 181.CrossRefGoogle Scholar
  23. 23.
    Stuiver, M., Quay, P. D., Changes in atmospheric carbon-14 attributed to a variable sun, Science, 1980, 207(4426): 11.PubMedCrossRefGoogle Scholar
  24. 24.
    Eddy, J. E., The Maunder Minimum: A reappraisal, Solar Physics, 1983, 89(1): 195.CrossRefGoogle Scholar
  25. 25.
    Silverman, S. M., Is the Maunder Minimum real? EOS, 1993, 74(40): 450.CrossRefGoogle Scholar
  26. 26.
    Schroder, W., Treder, H. J., Comment on “Do solar variations change climate?”, EOS, 1993, 74(25): 275.CrossRefGoogle Scholar
  27. 27.
    Ye Shihui, New progress in the study of sunspots, Progress in Astronomy, 1998, 16(1): 17.Google Scholar
  28. 28.
    Attolini, M. R., Cecchini, S., Castagnoli, G. C. et al., On the existence of the 11-year cycle in solar activity before the Maunder Minimum, Journal of Geophysical Research, 1988, 93(A11): 12729.CrossRefGoogle Scholar
  29. 29.
    Castagnoli, G. C., Bonino, G., Provenzale, A. et al., On the presence of regular periodicities in the thermoluminescence profile of a recent sea sediment core, Philosophical Transactions of the Royal Society of London, 1990, 330(A1615): 481.CrossRefGoogle Scholar
  30. 30.
    Kurths, J., Spiering, Ch., Muller-Stoll, W. et al., Search for solar periodicities in Miocence tree ring widths, Terra Nova, 1993, 5(4): 359.CrossRefGoogle Scholar
  31. 31.
    Trendall, A. F., Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia, Economic Geology, 1973, 68(7): 1089.CrossRefGoogle Scholar
  32. 32.
    Williams, G. E., Sunspot periods in the late Precambrian glacial climate and solar-planetary relations, Nature, 1981, 291(5817): 624.CrossRefGoogle Scholar
  33. 33.
    Jackson, K., Mid-Proterozoic dolomitic varves and microcycles from the McArthur Basin, northern Australia, Sedimentary Geology, 1985, 44(3/4): 301.CrossRefGoogle Scholar
  34. 34.
    Schove, D. J., Auroral numbers since 500 BC, J. Brit. Astron. Ass., 1962, 72(1): 30.Google Scholar
  35. 35.
    Broecker, W. S., Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science, 1997, 278(5343): 1582.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang Zhenda, The Solar Physics (in Chinese), Beijing: Science Press, 1992, 292–300.Google Scholar
  37. 37.
    Raisbeck, G. M., Yiou, F., Jouzel, J. et al.,10Be and δ2H in polar ice cores as a probe of the solar variability’s influence on climate, Philosophical Transactions of the Royal Society of London, 1990, 330(A1615): 463.CrossRefGoogle Scholar
  38. 38.
    Thompson, L. G., Yao, T., Davis, M. E. et al., Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core, Science, 1997, 276: 1821.CrossRefGoogle Scholar
  39. 39.
    Yao Tandong, Jiao Keqin, Tian Lide et al., Climatic variations since the Little Ice Age recorded in the Guliya ice core, Science in China, Ser. D, 1996, 39(6): 587.Google Scholar
  40. 40.
    Yao Tandong, Shi Yafeng, Qin Dahe et al., Ice core records of Guliya Ice Cap Uplift and environmental changes of Qinghai-Xizang (Tibetan) Plateau in the Late Cenozonic (eds. Shi Yafeng, Li Jijun, Li Bingyuan) (in Chinese), Guangzhou: Guangdong Science and Technology Press, 1998, 247–295.Google Scholar
  41. 41.
    Wang Ninglian, Yao Tandong, Qin Dahe et al., New evidence for enhanced cosmogenic isotope production rate in the atmosphere ≈ 37kaBP from the Guliya ice core, Chinese Science Bulletin, 1999, 44(17): 1616CrossRefGoogle Scholar
  42. 42.
    Beer, J., Blinov, A., Bonani, G. et al., Use of10Be in polar ice to trace the 11-year cycle of solar activity, Nature, 1990, 347(6289): 164.CrossRefGoogle Scholar
  43. 43.
    Beer, J., Baumgartner, St., Dittrich-Hannen, B. et al., Solar variability traced by cosmogenic isotopes, The Sun as a Variable Star: Solar and Stellar Irradiance Variations (eds. Pap, J. M., Frohlich, C., Hudson, H. S. et al.), Cambridge: Cambridge University Press, 1994, 291–300.Google Scholar
  44. 44.
    Beer, J., Mende, W., Stellmacher, R. et al., Intercomparisons of proxies for past solar variability, Climatic Variations and Forcing Mechanisms of the Last 2 000 Years (eds. Jones, P. D., Bradley, R. S., Jouzel, J.), Berlin: Springer, 1996, 501–517.Google Scholar
  45. 45.
    Beer, J., Andree, M., Oeschger, H. et al., The camp century10Be record: implications for long-term variations of the geomagnetic dipole moment, Nuclear Instruments and Methods in Physics Research, 1984, B5(2): 380.Google Scholar
  46. 46.
    Schroder, W., On the existence of the 11-year cycle in solar and auroral activity before and during the so-called Maunder Minimum, Journal of Geomagnetism and Geoelectricity, 1992, 44(2): 119.Google Scholar
  47. 47.
    Jin Lizhao, Zeng Zhiquan, Chronological table of aurora observed in China from 2700 BC to 1911 AD, Handbook of Basic Data in Geoscience (eds. Zhang Jiacheng, Li Wenfan), Beijing: Ocean Press, 1986, 224–231.Google Scholar
  48. 48.
    Silverman, S. M., Secular variation of the aurora for the past 500 years, Reviews of Geophysics, 1992, 30(4): 333.CrossRefGoogle Scholar
  49. 49.
    Hoyt, D. V., Schatten, K. H., Overlooked sunspot observations by Hevelius in the early Maunder Minimum, 1653–1684, Solar Physics, 1995, 160(2): 371.CrossRefGoogle Scholar
  50. 50.
    Hoyt, D. V., Schatten, K. H., Overlooked sunspot by Flamsteed during the Maunder Minimum, Solar Physics, 1995, 160(2): 379.CrossRefGoogle Scholar
  51. 51.
    Friis-Christensen, E., Lassen, K. Length of the solar cycle: an indicator of solar activity closely associated with climate, Science, 1991, 254(5032): 698.PubMedCrossRefGoogle Scholar
  52. 52.
    Baliunas, S., Soon, W., Are variations in the length of the activity cycle related to changes in brightness in solar-type stars? The Astrophysical Journal, 1995, 450: 896.CrossRefGoogle Scholar
  53. 53.
    Schove, D. J., The sunspol cycle, 649 B.C. to 2000 A.D., Journal of Geophysical Research, 1955, 60(1): 127.CrossRefGoogle Scholar
  54. 54.
    Mayaud, P. N., The aa indices: A 100-year series characterizing the magnetic activity, Journal of Geophysical Research, 1972, 77(34): 6870.CrossRefGoogle Scholar
  55. 55.
    Wang Shaowu, Zhao Zongci, The 36 yr wetness oscillation in China and its mechanism, Journal of Meteorology (in Chinese with English abstract), 1979, 37(1): 64.Google Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Ninglian Wang
    • 1
  • L. G. Thompson
    • 2
  • J. Cole-Dai
    • 2
  1. 1.Laboratory of Ice Core and Cold Regions Environment, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Byrd Polar Research CenterOhio Stale UniversityOhioUSA

Personalised recommendations