Science in China Series A: Mathematics

, Volume 48, Supplement 1, pp 168–179 | Cite as

Adiabatic paths and pseudoholomorphic curves

  • Armen G. Sergeev


We consider the (2+1)-dimensional Abelian Higgs model, governed by the GinzburgLandau action functional and describe the adiabatic limit construction for this model. Then we switch to the 4-dimensional case and show that the Taubes correspondence may be considered as a (2+2)-dimensional analogue of the adiabatic limit construction.


adiabatic path Ginzburg-Landau equation Seiberg-Witten equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taubes, C. H., SW ⇒ Gr: From the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc., 1996, 9: 845–918.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Taubes, C. H., Gr ⇒ SW: From pseudo-holomorphic curves to Seiberg-Witten solutions, J. Diff. Geom., 1999, 51: 203–334.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Jaffe, A., Taubes, C. H., Vortices and Monopoles, Boston: Birkhäuser, 1980.zbMATHGoogle Scholar
  4. 4.
    Manton, N. S., A remark on the scattering of BPS monopoles, Phys. Lett., 1982, 110B: 54–56.MathSciNetGoogle Scholar
  5. 5.
    Stuart, D., Dynamics of Abelian Higgs vortices in the near Bogomolny regime, Commun. Math. Phys., 1994, 159: 51–91.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Sergeev, A. G., Adiabatic limit in the Seiberg-Witten equations, AMS Transl., Ser. 2, 2004, 212: 281–295.MathSciNetGoogle Scholar
  7. 7.
    Salamon, D., Spin geometry and Seiberg-Witten invariants, Warwick: Warwick Univ., preprint, 1996.Google Scholar
  8. 8.
    Sergeev, A. G., Vortices and Seiberg-Witten Equations, Nagoya Math. Lectures, Vol. 5, Nagoya, 2002.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations