Advertisement

Science in China Series A: Mathematics

, Volume 46, Issue 4, pp 530–537 | Cite as

Recollements of extension algebras

  • Qinghua Chen
  • Yanan LinEmail author
Article

Abstract

Let A be a finite-dimensional algebra over arbitrary base fieldk. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensionalk-algebras B and C:
then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):

Keywords

trivial extension algebras derived categories (symmetric) recollements partial tilting complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Happel, D., Triangulated categories in the representation theories of finite dimensional algebra, London Lecture Notes Series 119, New-York: Cambridge University Press, 1988.Google Scholar
  2. 2.
    Rickard, J., Morita theory for derived categories, J. London Math. Soc., 1989, 39(2): 436–456.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Rickard, J., Derived categories and stable equivalence, J. Pure and Appl. Algebra, 1989, 61: 303–317.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hughes, D., Waschbuesch, J., Trivial extensions of tilted algebras, Proc. London Math. Soc., 1982, 46(3): 347–364.Google Scholar
  5. 5.
    Grothendieck, A., Groups and classes des categories abeliennes et trianguliers complexe parfaits, LNM589, New York: Springer-Verlag, 1977. 351–371.Google Scholar
  6. 6.
    Beilinson, A. A., Bernstein, J., Deligne, P., Faisceaux pervers, in Analyse et topologie sur les espaces singuliers, Asterisque, 1982, 100: 1–172.MathSciNetGoogle Scholar
  7. 7.
    Cline, E., Parshall, B., Scott, L., Finite dimensional algebras and hight weightest categories, J. Reine Angew Math, 1988, 391: 85–99.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Cline, E., Parshall, B., Scott, L., Algebraic stratification in representative categories, J. of Algebra, 1988, 117: 504–521.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Koenig, S., Tilting complexes, perpendicular categories and recollements of derived module categories of rings, J. Pure and Appl. Algebra, 1991, 73: 211–232.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Wiedemann, A., On stratificatios of derived module categories, preprint.Google Scholar
  11. 11.
    Iversen, B., Cohomology of Sheaves, Berlin: Springer-Verlag, 1986.Google Scholar
  12. 12.
    Du, X., Derived categories of algebra, Science in China, Series A, 1996, 26(11): 1002–1008.Google Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.Department of MathematicsXiamen UniversityXiamenChina

Personalised recommendations