Conformai invariant Painlevé expansions and higher dimensional integrable models

  • Senyue Lou


After the (1 + 1)-dimensional nonlinear Schrödinger equation is embedded in higher dimensions and the usual singularity analysis approach is extended such that all the Painlevé expansion coefficients are conformai invariant, many higher dimensional integrable models are got after the nontrivial conformai invariant expansion coefficients are taken to be zero simply. The Painlevé properties of the obtained higher dimensional models (including some (3 + l)-dimensional models) are proved.


conformai invariance Painlevé analysis integrable model. 


  1. 1.
    Ablowitz, M. J., Clarkson, P. A., Solitons nonlinear evolution equations and inverse scattering,London Mathematical Society Lecture Note Series, Cambridge: Cambridge University Press, 1991, 149.zbMATHGoogle Scholar
  2. 2.
    Calogero, F., Maccari, A., Equations of nonlinear Schrödinger type in 1 + 1 and 2+1 dimensions obtained from integrable PDEs, inProceedings of the Metting on Inverse Problems, Montpelier, 1986 (ed. Sabatier, P. C.), New York: Academic, 1988, 463–480.Google Scholar
  3. 3.
    Lou, S., Deformations of the Riccati equation by using Miura type transformations,J. Phys. A: Math. Gen., 1997, 30: 7259.zbMATHCrossRefGoogle Scholar
  4. 4.
    Lou, S. Y., Symmetries of the KdV equation and four hierachies of the integrodifferential KdV equation,J. Math. Phys., 1994, 35: 2390.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lou, S. Y., Integrable models constructed from the symmetries of the modified KdV equation,Phys. Lett. B, 1993, 302: 261.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ward, R. S., Integrable and solvable system and relations among them,Phil. Trans. R. Soc. Land. A, 1985, 315: 451.zbMATHCrossRefGoogle Scholar
  7. 7.
    Cheng, Y., Li, Y. S., The constraint of the Kadomtsev-Petviashvili equation and its special solutions,Phys. Lett. A, 1991, 157: 22.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Konopenlcnenko, B., Sidorenko, J., Strampp, W., (l + 1)-dimensional integrable systems as symmetry constraints of (2 + l)-dimensional systems,Phys. Lett. A, 1991, 157: 17.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lou, S. Y., Hu, X. B., Infinitely many Lax pairs and symmetry constraints of the KP equation,J. Math. Phys., 1997, 38: 6401.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Maccari, A., The Kadomtsev-Petviashvili equation as a source of integrable models,J. Math. Phys., 1996, 37: 6207.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Calogero, F., Eckhaus, W., Nonlinear evolution equations, rescalings, model PDEs and their integrability (II),Inverse Prob., 1988, 4: 11.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lou, S. Y., Searching for higher dimensional integrable models from lower ones via Painlevé analysis,Phys. Rev. Lett., 1998, 80: 5027.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lou, S. Y., Conformai invariance and integrable models,J. Phys. A:Math. Gen., 1997, 30: 4803.zbMATHCrossRefGoogle Scholar
  14. 14.
    Lou, S. Y., Search for high dimensional integrable models,Science in China, Ser. A, 1997, 34; 1317.CrossRefGoogle Scholar
  15. 15.
    Lou, S. Y.,KdV extensions with Painlevé property,J. Math. Phys., 1998, 39: 2112.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Weiss, J., Tabor, M., Carnevale, G., The Painlevé property for partial differential equations,J. Math. Phys, 1983, 24: 522.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ramani, A., Gramáticos, B., Bountis, T., The Painlevé property and singularity analysis of integrable and nonintegrable systems,Phys. Rep., 1989, 180: 159.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Conte, R., Invariant Painlevé analysis of partial differential equations,Phys. Lett. A, 1989, 140: 383.CrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Senyue Lou
    • 1
  1. 1.Department of Applied PhysicsShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations