The Edgeworth expansion for distributions of extreme values

  • Shihong Cheng
  • Changguo Jiang


We present necessary and sufficient conditions of Edgeworth expansion for distributions of extreme values. As a corollary, rates of the uniform convergence for distributions of extreme values are obtained.


regular variation of second order Edgeworth expansion rate of uniform convergence 


  1. 1.
    Gnedenko, B. V., Sur la distribution limite du terme maximum d’ une sene aleatoire, Annals of Math., 1943, 44: 423.CrossRefMathSciNetGoogle Scholar
  2. 2.
    de Haan, L., On regular variation and its application to the weak convergence of sample extreme, Math. Centre Tract 32, Amsterdam: Math. Centmm, 1970.Google Scholar
  3. 3.
    Hall, P., On the rate of convergence of normal extremes, J. Appl. Probab., 1979, 16: 433.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hall, W. J., Wellner, J. A., The rate of convergence in law of the maximum of an exponential samples, Statist. Neerlandica, 1979, 33: 151.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Davis, R., The rate of convergence in distribution of the maxima, Statist. Neerlandica, 1982, 36: 31.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Smith, R., Uniform rates of convergence in extreme value theory, Adv. in Appl. Probab., 1982, 14: 543.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Resnick, S. I., Uniform rates of convergence to extreme value distribution, Probability and Statistis: Essays in Honor of Franklin Graybill, Amsterdam: North-Holland, 1986.Google Scholar
  8. 8.
    Resnick, S. I., Extreme Values, Regular variation, and Point Processes, New York: Springer, 1987.MATHGoogle Scholar
  9. 9.
    de Haan, L., Resnick, S. I., Second order regular variation and rates of convergence in extreme value theory, Annals of Probab., 1996, 24: 97.MATHCrossRefGoogle Scholar
  10. 10.
    Geluk, J. L., de Haan, L., Regular variation, extensions and Tauberian theorems, CWI Tract 40, Amsterdam: Center for Mathematics and Computer Science, 1987.Google Scholar
  11. 11.
    de Haan, L., Stadtmuller, U., Generalized regular variation of second order, J. Austral. Math. Soo. Ser. A, 1998, 61: 381.Google Scholar
  12. 12.
    Omey, E., Willekens, E., II-variation with remainder, J. London Math. Soc., 1988, 37: 105.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Vervaat, W., Functional central limit theorems for processes with positive drift and their inverses, Z. Wahrsch. Verw. Gebiete, 1972, 23: 249.CrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations