Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency ofE. coli

  • Robert B. Brown
  • D. Klaus
  • P. Todd


Cultures of Escherichia coli grown in space reached a 25% higher average final cell population than those in comparably matched ground controls (p<0.05). However, both groups consumed the same quantity of glucose, which suggests that space flight not only stimulated bacterial growth as has been previously reported, but also resulted in a 25% more efficient utilization of the available nutrients. Supporting experiments performed in “simulated weightlessness” under clinorotation produced similar trends of increased growth and efficiency, but to a lesser extent in absolute values. These experiments resulted in increases of 12% and 9% in average final cell population (p<0.05), while the efficiency of substrate utilization improved by 6% and 9% relative to static controls (p=0.12 and p<0.05, respectively). In contrast, hypergravity, produced by centrifugation, predictably resulted in the opposite effect — a decrease of 33% to 40% in final cell numbers with corresponding 29% to 40% lower net growth efficiencies (p<0.01). Collectively, these findings support the hypothesis that the increased bacterial growth observed in weightlessness is a result of reduced extracellular mass transport that occurs in the absence of sedimentation and buoyancy-driven convection, which consequently also improves substrate utilization efficiency in suspended cultures.


Substrate Utilization Space Flight Ground Control Growth Efficiency Flight Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bouloc, P., D’Ari, R.: Escherichia coli Metabolism in Space. J. Gen. Microbiol., vol. 137, p. 2839 (1991).Google Scholar
  2. 2.
    Gasset, G., Tixador, R., Eche, B., Lapchine, L., Moatti, N., Toorop, P., Woldringh, C.: Growth and Division of Escherichia coli under Microgravity Conditions. Res. Microbiol., vol. 145, p. 111 (1994).CrossRefGoogle Scholar
  3. 3.
    Thévenet, D., D’Ari, R., Bouloc, P.: The SIGNAL Experiment in BIORACK: Escherichia coli in Microgravity. Biotech., vol. 47, p. 89 (1996).CrossRefGoogle Scholar
  4. 4.
    Manko, V. G., Kordyum, V. A., Vorob’yev, L. V., Konshin, N. I., Nechitaylo, G. S.: Microbiology: Changes over Time in Proteus vulgaris Cultures Grown in the ROST-4M2 Device on the Salyut-7 Space Station. NASA Contractor Report 3922 (14), p. 70 (1987).Google Scholar
  5. 5.
    Mennigmann, H. D., Lange, M.: Growth and Differentiation of Bacillus subtilis under Microgravity Conditions. Naturwissenschaften, vol. 73, p. 415 (1986).CrossRefGoogle Scholar
  6. 6.
    Klaus, D., Simske, S., Todd, P., Stodieck, L.: Investigation of Space Flight Effects on Escherichia coli and a Proposed Model of Underlying Physical Mechanisms. Microbiology, vol. 143, p. 449 (1997).CrossRefGoogle Scholar
  7. 7.
    Brown, R. B.: Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia coli. PhD thesis, University of Colorado, Boulder (1999).Google Scholar
  8. 8.
    Ciferri, O., Tiboni, O., Pasquale, G. D., Orlandoni A. M., Marchesi M. L.: Effects of Microgravity on Genetic Recombination in Escherichia coli. Naturwissenschaften, vol. 73, p. 418 (1986).CrossRefGoogle Scholar
  9. 9.
    Kordium, V. A., Mashinsky, A. L., Manko, V. G., Babski, V. G., Sytnik, K. M., Kordyum, E. L., Bochagova, O. P., Nefedov, Y. L., Kozharinov, V. I., Grechkov, G. M.: Growth and Cell Structure of Proteus vulgaris when Cultivated in Weightlessness in the Cytos Apparatus. Life Sci. Space Res., vol. 18, p. 213 (1980).Google Scholar
  10. 10.
    Mattoni, R. H. T.: Space-Flight Effects and Gamma Radiation Interaction on Growth and Induction of Lysogenic Bacteria. BioScience, vol. 18, p. 602 (1968).CrossRefGoogle Scholar
  11. 11.
    Klaus, D. M., Todd, P., Schatz, A.: Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res., vol. 21, p. 1315 (1998).CrossRefGoogle Scholar
  12. 12.
    Lam, K. S., Mamber, S., Pack, E., Forenza, S., Fernandes, P., Klaus, D.: The Effects of Space Flight on the Production of Monorden by Humicola fucoatra WC5157 in Solid State Fermentation. Appl. Microbio. Biotechnol., vol. 49, p. 579 (1998).CrossRefGoogle Scholar
  13. 13.
    Klaus, D. M.: Microgravity and its Implications for Fermentation Biotechnology. Trends in Biotech., vol. 16, p. 369 (1998).CrossRefGoogle Scholar
  14. 14.
    Walther, I., Bechler, B., Müller, O., Hunzinger, E., Cogoli, A.: Cultivation of Saccharomyces cerevisiae in a Bioreactor in Microgravity, J. Biotech., vol. 47, p.113 (1996).CrossRefGoogle Scholar
  15. 15.
    Montgomery, P. O. B., Cook, J. E., Reynolds, R. C., Paul, J. S., Hayflick, L., Stock, D., Schulz, W. W., Kimsey, S., Thirolf, R. G., Rogers, T., Cambell, D.: The Response of Single Human Cells to Zero Gravity. In Vitro, vol. 14, p. 165 (1978).CrossRefGoogle Scholar
  16. 16.
    Yee, L., Blanch, H. W.: Recombinant Protein Expression in High Cell Density Fed-Batch Cultures of Escherichia coli. Biotechnology, vol. 10, p. 1550 (1992).CrossRefGoogle Scholar
  17. 17.
    Robbins, J. W., Taylor, K. B.: Optimization of Escherichia coli Growth by Controlled Addition of Glucose. Biotechnol. Bioeng., vol. 34, p. 1289 (1989).CrossRefGoogle Scholar
  18. 18.
    Gottschalk, G.: Bacterial Metabolism. Springer-Verlag, New York (1986).Google Scholar
  19. 19.
    Barford, J. P., Pamment N. B., Hall R. J.: Lag Phases and Transients. Microbial Population Dynamics, M. J. Bazin (ed.), CRC, Boca Raton (1982).Google Scholar
  20. 20.
    Vogel, D. H., Bonner, D. M.: Acetylornithinase of Escherichia coli: Partial Purification and some Properties. J. Biol. Chem., vol. 218, p. 97 (1956).Google Scholar
  21. 21.
    Pollard, J.: Theoretical Studies on Living Systems in the Absence of Mechanical Stress. J. Theoretical Biology, vol. 8, p. 113 (1965).CrossRefGoogle Scholar
  22. 22.
    Tixador, R., Richoilley, G., Gasset, G., Templier, J., Bes, J. C., Moatti, N., Lapchine, L.: Study of Minimal Inhibitory Concentration of Antibiotics on Bacteria Cultivated in vitro in Space (Cytos 2 Experiment). Aviat. Space Environ. Med., vol. 56, p. 748 (1985).Google Scholar
  23. 23.
    Tixador, R., Gasset, G., Ench, B., Moatti, N., Lapchine, L., Woldringh, C., Toorop, P., Moatti, J. P., Delmotte, F., Tap, G.: Behavior of Bacteria and Antibiotics under Space Conditions. Aviat. Space Environ. Med., vol. 65, p. 551 (1994).Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Robert B. Brown
  • D. Klaus
    • 1
  • P. Todd
  1. 1.BioServe Space TechnologiesUniversity of ColoradoBoulderUSA

Personalised recommendations