Science in China Series A: Mathematics

, Volume 44, Issue 12, pp 1596–1601 | Cite as

Analysis of the strengthening and toughening of a biomaterial interface

Article

Abstract

Based on the transmission electron micrographs of nacre, the existence of mineral bridges in the organic matrix interface is confirmed. It is proposed that the microarchitecture of nacre should be considered as a “brick-bridge-mortar” (BBM) arrangement rather than traditional “brick and mortar” (BM) one. Experiments and analyses indicate that the mineral bridges effectively affect the strength and toughness of the interfaces in nacre. Comparison with a laminated composite with BM structure, SiC/BN, shows that the pattern of the crack extension and the toughening mechanism of the two materials are different. This reveals that the mineral bridges play a key role in the toughening mechanisms of nacre, which gives a conceptual guidance in material synthesis.

Keywords :

organic matrix interface mineral bridge nacre microstructure fracture toughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Currey, J. D., Mechanical properties of mother of pearl in tension, Proc. R. Soc. Lond. B, 1977, 196: 443–463.Google Scholar
  2. 2.
    Jackson, A. P., Vincent, J. F. V., Turner, R. M., The mechanical design of nacre, Pmc. R. Soc. Lond. B., 1988, 234: 415–440.CrossRefGoogle Scholar
  3. 3.
    Wang, R. Z., Wen, H. B., Cui, F. Z. et al., Observations of damage mo~hologies in nacre during deformation and fracture, J. Mater. Sci., 1995, 30: 2299–2304.CrossRefGoogle Scholar
  4. 4.
    Smith, B. L., Schaffer, T. E., Viani, M. et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature, 1999, 399: 761–763.CrossRefGoogle Scholar
  5. 5.
    Addadi, L., Weiner, S., A pavement of pearl, Nature, 1997, 389: 912–915.CrossRefGoogle Scholar
  6. 6.
    Schaffer,T. E., Ionescu-Zantti, C., Fritz, M. et a1., Does abalone nacre form by heteroepiaxial nucleation or by growth through mineral bridges? Chem. Mater., 1997, 9: 1731–1740.CrossRefGoogle Scholar
  7. 7.
    Vincent, J. F. V., Structural Biomaterials, New York; The Macmillan Press Ltd, 1982.Google Scholar
  8. 8.
    Song, F., Bai, Y. L., Effects of mineral bridges on the mechanical properties of nacre, Acta Mechanics Solida Sinica ( in Chinese), 2000, 21 (Special Issue): 171–176.Google Scholar
  9. 9.
    Szuromi, P., Microstructural engineering of materials, Science, 1997, 277: 1183–1183.CrossRefGoogle Scholar
  10. 10.
    Heuer, A. H., Fink, D. J., Laraia, J. L. et al., Innovative materials processing strategies: a biomimetic approach, Science, 1992. 255: 1098–1105.CrossRefGoogle Scholar
  11. 11.
    Stupp, S. I., Braun, P. V., Molecular manipulation of microstmcture: biomaterials, ceramics, and semiconductom, Science, 1997, 277: 1242–1248.CrossRefGoogle Scholar
  12. 12.
    Watabe, N., Crystal growth of calcium carbonate in the invertebrates, Pmg. Crystal Growth Charact., 1981, 4: 99–147.CrossRefGoogle Scholar
  13. 13.
    Clegg, W. J., Kendall, K., Alford, N. M. et al., A simple way to make tough ceramics, Nature, 1990, 347: 455–457.CrossRefGoogle Scholar
  14. 14.
    Jackson, A. P.. Vincent, J. F. V., Briggs, D. et a1., Application of surface analytical techniques to the study fracture surface of mother-of pearl, J. Mater. Science Letters, 1986, 5: 975–980.CrossRefGoogle Scholar
  15. 15.
    Feng, Q. L., Su, X. W., Ciu, F. Z. et a1., Crystallographic orientation domains of flat tablets in nacre, Biomimetics, 1995, 3: 159–167.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.LNM, Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations