Biologia Plantarum

, Volume 24, Issue 6, pp 446–460 | Cite as

Sap flow rate and transpiration dynamics in the full-grown oak (Quercus robus L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions

  • J. Čermák
  • J. Úlehla
  • J. Kučera
  • M. Penka
Original Papers


Sap flow rate and transpiration dynamics were studied in the course of 3 years in a dominant tree species in the floodplain forest,i.e. in the full-grown oak (Quercus robur L.) tree, using the method of trunk heat balance devised by the authors. The investigations were carried out at a period at which regular and marked fluctuation in a relatively high water table usually occurred, culminating in seasonal flooding. High sap flow rate values in the tree were established under conditions of non-limiting water supply in soil (up to 400 kg per day or up to 39 000 kg per vegetation period) and characteristic daily flow curves (rounded with a large amplitude and with the maximum at noon), corresponding to those described theoretically. Relationships were inferred by means of which tree water consumption can be calculated under these conditions on the basis of data measured at meteorological stations. From these equations it follows that the transpiration of the tree canopy amounted to 80% of the potential evapotranspiration. The amount of the used daily tree water reserve was assessed to be 0.4 mm in the seasonal average. The transpiration coefficient reached in climatically distinct years the values of 400 to 700 of the increase in tree dry matter. The area of the so-called effective tree-crown ground plan approximated to the area determined geodetically. The results obtained are useful for both ecophysiological and hydrological studies. Some of the described procedures are convenient for the evaluation of functional tree dimensions and according to them also of the forest stand structure.


Transpiration Rate Potential Evapotranspiration Quercus Robur Floodplain Forest Transpiration Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Čermák, J.: [The course of transpiration flow rate in full grown trees in different time scales.] In Czech. - In:Huzulák, J., Masarovičová, E. (ed.): Fotosyntéza a Vodný Rezim Drevín. Pp. 47–54. Modra-Piesky 1977.Google Scholar
  2. Čermák, J., Deml, M., Penka, M.: A new method of sap flow rate determination in trees. - Biol. Plant.15: 171–178, 1973.CrossRefGoogle Scholar
  3. Čermák, J., Huzulák, J., Penka, M.: Water potential and sap flow rate in adult trees with moist and dry soil as used for the assessment of root system depth. - Biol. Plant.22: 34–41. 1980.Google Scholar
  4. Čermák, J., Kučera, J.: The compensation of natural temperature gradient in the measuring point during the sap flow rate determination in trees. - Biol. Plant.23: 469–471, 1981.CrossRefGoogle Scholar
  5. Čermák, J., Kučera, J., Penka, M.: Improvement of the method of sap flow rate determination in full-grown trees based on heat balance with direct electric heating of xylem. - Biol. Plant.18: 105–110, 1976.Google Scholar
  6. Čermák, J., Kučera, J., Prax, A., Zídek, V.: [Water flow in the soil-plant-atmosphere system on the example of birch in a forest stand.] In Czech. - In: Proc. Sem. Bilancia energie a vody v polných a lesných ekosystémoch. Pp. 135–149. VŠP, Nitra 1979.Google Scholar
  7. Clark, J., Gibbs, R. D.: Studies in tree physiology; IV. - Can. J. Bot.35: 219–253, 1957.CrossRefGoogle Scholar
  8. Hinckley, T. M., Bruckerhoff, D. N.: The effects of drought on water relations and stem shrinkage ofQuercus alba. - Can. J. Bot.53: 62–72, 1975.Google Scholar
  9. Hinckley, T. M., Lassoie, J. P., Running, S. W.: Temporal and spatial variations in the water status of forest trees. - Forest Sci. Monogr.20: 1–72, 1978.Google Scholar
  10. Hodges, J. D., Lorio, P. L. Jr.: Comparison of field techniques for measuring moisture stress in large Loblolly pines. - Forest Sci.17: 220–223, 1971.Google Scholar
  11. Huzulák, J.: Relative saturation deficit in some forest tree species: Development, daily and seasonal changes. -Biológia (Bratislava)32: 271–278, 1977a.Google Scholar
  12. Huzulák, J.: Diurnal xylem pressure potential patterns in dominant tree species of oak-hornbeam forest. -Biológia (Bratislava)32: 469–476, 1977b.Google Scholar
  13. Huzulák, J., Eliáš, P.: The intensity of transpiration flow in the trunk ofQuercus cerris. - Biológia (Bratislava)31: 537–543, 1976.Google Scholar
  14. Krontorád, K.: Water regime and ecologically important properties of semigley soils under the floodplain forest of South Moravia. - Report No. 4, Ecosystem Study on Floodplain Forest in South Moravia, VŠZ Brno 1974.Google Scholar
  15. Kučera, J., Čermák, J., Penka, M.: Improved thermal method of continual recording the transpiration flow rate dynamics. - Biol. Plant.19: 413–420, 1977.Google Scholar
  16. Ladefoged, K.: Transpiration of forest trees in closed stands. - Physiol. Plant.16: 378 to 414, 1963.CrossRefGoogle Scholar
  17. Linacre, E. T.: A simple formula for estimating evaporation rates in various climates, using temperature data alone. - Agr. Meteorol.18: 409–424, 1977.CrossRefGoogle Scholar
  18. Makkink, G. F., Van Heemst, H. D. J.: Water Economy of a Fictive Crop. - Agr. Res. Rep. Wageningen No. 817: 1–38, 1974.Google Scholar
  19. Molchanov, A. A.: Gidrologicheskaya Rol’ Lesa. [Hydrological Role of Forest]. - Izd. Akad. Nauk SSSR, Moskva 1960.Google Scholar
  20. Morikawa, Y.: Seasonal variation and diurnal changes in transpiration ofChamaecyparis obtusa on clear days. - J. jap. Forest Sci.53: 219–221, 1971.Google Scholar
  21. Morikawa, Y.: Sap flow inChamaecyparis obtusa in relation to water economy of woody plants. - Bull. Tokyo Univ. Forests No. 66: 251–297, 1974.Google Scholar
  22. Mráz, K.: [Proposed changes of site conditions of South Moravian floodplain forests under the influence of water management]. In Czech. - Zprávy lesnického Výzkumu19: 2–9, 1973.Google Scholar
  23. Pelíšek, J.: [The dynamics of ecological soil properties in floodplain forest of south Moravia (Lednice)]. In Czech. - In: Proc. Funkce produktivita a struktura ekosystému luzního lesa. VŠZ, Brno 1975.Google Scholar
  24. Penka, M., Čermák, J., Štěpánek, V., Palát, M.: Diurnal courses of transpiration rate and transpiration flow rate as determined by the gravimetric and thermometric methods in a full-grown oak tree (Quercus robur L.). - Acta Univ. Agr. Brno, Ser. C,48 (1-4): 3–30, 1979.Google Scholar
  25. Penman, H. L.: Vegetation and Hydrology. - Tech. Commun. No. 53, Commonwealth Bureau of Soils, Harpenden 1963.Google Scholar
  26. Polster, H.: Gesicherts und Ungesicherts über den Wasserhaushalt des Waldes. - Forst Jagd4: 256–302, 1954.Google Scholar
  27. Rauner, Ju. L.: Deciduous forests. - In:Monteith, J. L. (ed.): Vegetation and Atmosphere. Case Stud. Vol. 2. Pp. 241–264. Academic Press, London-New York 1976.Google Scholar
  28. Rutter, A. J.: Water consumption by forests. - In:Kozlowski, T. T. (ed.): Water Deficits and Plant Growth. Vol. II. Pp. 23–84. Academic Press, New York-London 1968.Google Scholar
  29. Šály, R.: Pôda — Základ Lesnej Produkcie. [The Soil — Fundament of Forest Production.] Príroda, Bratislava 1978.Google Scholar
  30. Stocker, O.: Die Abhängigkeit der Transpiration von den Umweltfaktoren. - In:Ruhland, W. (ed.): Handbuch der Pflanzenphysiologie, Vol. 3. Pp. 436–488. Springer Verlag, Berlin-Göttingen -Heidelberg 1956.Google Scholar
  31. Swanson, R. H.: Seasonal course of transpiration of Lodgepole pine and Engelmann spruce. - In: Proc. Int. Symp. Forest Hydrology. Pp. 417–432. Pensylvania State Univ. 1965.Google Scholar
  32. Úlehla, J.: [Potential evapotranspiration in years 1952–1969 in Pohořelice.] In Czech. - Rostl. Výroba (Praha)17: 191–200, 1971.Google Scholar
  33. Úlehla, J., Čermák, J.: [Daily totals of transpiration flow in adult trees and potential evapotranspiration.] In Czech. - In:Huzulák, J., Masarovičová, E. (ed.): Fotosyntéza a Vodný Rezim Drevín. Pp. 55–60. Modra-Piesky 1977.Google Scholar
  34. Vyskot, M.: Tree Story Biomass in Lowland Forests in South Moravia. (Rozpravy ČSAV 86 (10)). - Academia, Praha 1976.Google Scholar
  35. Walter, H., Lieth, H.: Klimadiagram Weltatlas. Gustav Fischer Verlag, Jena 1960.Google Scholar
  36. Waring, R. H., Running, S. W.: Water uptake, storage and transpiration by conifers: A physiological model. - In:Lange, O., Kappen, L., Schulze, E. D. (ed.): Ecological Studies. Analysis and Synthesis. Vol. 19. Water and Plant Life. Pp. 189–202, Springer Verlag, Berlin-Heidelberg 1976.Google Scholar
  37. Waring, R. H., Whitehead, D., Jarvis, P. G.: The contribution of stored water to transpiration in Scots pine. - Plant Cell Environm.2: 309–317, 1979.CrossRefGoogle Scholar
  38. Zídek, V., Čermák, J., Úlehla, J.: [Transpiration flow in oak from floodplain forest as related to potential evapotranspiration.] In Czech. - In: Sbor. 3. zjazdu SBS. Pp. 227–232, VŠLD, Zvolen 1980.Google Scholar

Copyright information

© Academia 1982

Authors and Affiliations

  • J. Čermák
    • 1
  • J. Úlehla
    • 2
  • J. Kučera
    • 1
  • M. Penka
    • 1
  1. 1.Institute of Forest EcologyAgricultural UniversityBrnoCzechoslovakia
  2. 2.Agricultural Research InstituteHrušovany u BrnaCzechoslovakia

Personalised recommendations