Superconvergence for triangular finite elements

  • Chen Chuanmiao 


Based on two classes of the orthogonal expansions in a triangle, superconvergence of m-degree triangular finite element solution (for evenm) and its average gradient (for oddm) at symmetric points for a second order elliptic problem are studied. There are no other superconvergence points independent of the coefficients of elliptic equation.


superconvergence triangular element any degree 


  1. 1.
    Chen, C. M., Huang, Y. Q.,High Accuracy Theory of Finite Elements (in Chinese), Changsha: Hunan Science and Technique Press, 1995, 1.Google Scholar
  2. 2.
    Chen, C. M., The element analysis method and superconvergence,The First Internatwnal Conference on Finite Element Methods: Superconvergence, Postprocessing and A Posteriori Estimates, Univ. Jyvaskyla, Finland, July 1–4, 1996Google Scholar
  3. 3.
    Chen, C. M., Optimal points of approximation solution for Galerkin method for two-point boundary value problem,Nuanber. Math. J. Chinese Univ., 1979, 1: 73.MATHGoogle Scholar
  4. 4.
    Chen, C. M., Optimal points of the stresses for triangular linear element,Numer. Math. J. Chinme Univ., 1980, 2: 12.MATHGoogle Scholar
  5. 5.
    Zhu, Q. D., Optimal points for quadratic triangular finite elements,J. Xiangtan University (in Chinese), 1981, 3: 36.Google Scholar
  6. 6.
    Krizek, M., Superconvergence results for linear triangular elements,Lecture Notes in Mathematics1192, New York: SpringerVerlay, 1986, 315–320.Google Scholar
  7. 7.
    Lin, Q., Yan, N. N.,Constructure and Analysis of Eficient Finite Elements (in Chinese), Baoding: Hebei University Press, 1996,Google Scholar
  8. 8.
    Li, B., Superconvergence for high degree finite elements,Number. Math. Sinica, 1990, 12: 75.Google Scholar
  9. 9.
    Chen, C.M., Superconvergence for L2-projection in finite elements,Chinese Science Bulletin, 1998, 43: 22.MATHMathSciNetGoogle Scholar
  10. 10.
    Wahlbin,L., Superconvergence in Galerkin finite element methods,Lecture Notes in Math., Vol. 1605, Berlin: Springer-Verlag, 1995.Google Scholar
  11. 11.
    Schatz, A., Sloan, I., Wahlbin, L., Superconvergence in finite element methods and meshes which are locally symmetric with respect to a point,SIAM J. Number. Anal., 1996, 33: 505.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Babuska, I., Strouboulis T., Upadhyay C., Gangaraj, S., Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poission' s, and the Elasticity equations,Numer. Methods for PDE, 1996, 12: 347.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, C. M.,W 1,∞-interior estimates for finite elements methods on regular mesh,J. Comput. Math., 1985, 3:1.MATHMathSciNetGoogle Scholar
  14. 14.
    Frehse, J., Rannacher, R., Eine L1-Fehlerabschatzung diskreter Gmndlosungen in der Methods der finiten Elemente, Tagungsband “Finite Elements”,Bonn. Math. Schrift., 1975, 89: 92.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Chen Chuanmiao 
    • 1
  1. 1.Institute of ComputationHunan Normal UniversityChangshaChina

Personalised recommendations