Biologia Plantarum

, 38:95 | Cite as

Photophysiology of turion formation and germination inSpirodela polyrhiza

  • K. -J. Appenroth
  • S. Teller
  • M. Horn
Original Paper


Standardized laboratory techniques for the vegetative growth of the duckweedSpirodela polyrhiza (Lemnaceaé), and for formation as well as germination of their turions were described. Increasing photon fluence rates of blue or red light increased the yield of turions. A specific stimulating effect of blue light was demonstrated under autotrophic but not under mixotrophic conditions. Therefore the spectral composition of light is not important in mixotrophic formation of turions whereas in autotrophic formation light sources with a higher portion of blue light are recommended. Dark-grown (etiolated) turions showed accelerated germination and higher germination percentage in comparison with light-grown turions after induction by a single red light pulse. This difference was overcome in continuous red light by speeding up the germination response of light-grown turions. Use of Petri dishes (8 cm3 nutrient solution) instead of Erlenmeyer flasks (50 cm3 nutrient solution) retarded germination response. Especially for long term experiments the use of Erlenmeyer flasks is recommended. Storage of turions for 72 h at 25 ‡C following at 5 ‡C in darkness after-ripening resulted in a decreased lag phase of the light-induced germination both after induction by a single light pulse and in continuous light.

Additional key words

blue light receptor duckweed Lemnaceae phytochrome 





blue light




turions-dark-grown (etiolated) turions


far red light


turions-light-grown turions


red light


“white” light


  1. Appenroth, K.-J.: Influence of nitrate, ammonium, and light on germination and appearance of nitrate reductase in turions. - Nova Acta Leopoldina70: 49–58, 1994.Google Scholar
  2. Appenroth, K.-J., Augsten, H.: Photophysiology of turion germination inSpirodela polyrhiza (L.) Schleiden. V. Demonstration of a calcium-requiring phase duripng hytochrome-mediated germination. - Photochem. Photobiol.52: 61–66, 1990a.CrossRefGoogle Scholar
  3. Appenroth, K.-J., Augsten, H.: Zur Bedeutung der Photosynthese für den Turionenaustrieb. - Colloq. Pflanzenphysiol. Humboldt-Univ. Berlin14: 93–96, 1990b.Google Scholar
  4. Appenroth, K.-J., Augsten, H., Mattner, A., Teller, S., Döhler, G.: Effect of UVB irradiation on enzymes of nitrogen metabolism in turionsof Spirodela polyrhiza (L.) Schleiden. - J. Photochem. Photobiol.18: 215–220, 1993.CrossRefGoogle Scholar
  5. Appenroth, K.-J., Augsten, H., Mohr, H.: Photophysiology of turion germination inSpirodela polyrhiza (L.) Schleiden. X. Role of nitrate in the phytochrome-mediated response. - Plant Cell Environ.15: 743–748, 1992.CrossRefGoogle Scholar
  6. Appenroth, K.-J., Bergfeld, R.: Photophysiology of turion germination inSpirodela polyrhiza (L.) Schleiden. XI. Structural changes during red light induced responses. - J. Plant Physiol.141: 583–588, 1993.Google Scholar
  7. Appenroth, K.-J., Dathe, W., Hertel, W., Augsten, H.: Photophysiology of turion germination inSpirodela polyrhiza (L.) Schleiden. VII. Action of jasmonic acid. - J. Plant Physiol.138: 345–349, 1991.Google Scholar
  8. Appenroth, K.-J., Dürr, S., Gabrys, H., Scheuerlein, R.: No regulation of45calcium-uptake or release by phytochrome as an essential step in the transduction chain. - Plant Physiol. Biochem.32: 429–435, 1994.Google Scholar
  9. Appenroth, K.-J., Hertel, W., Augsten, H.: Phytochrome control of turion formation inSpirodela polyrhiza.- Ann. Bot.66: 163–168, 1990a.Google Scholar
  10. Appenroth, K.-J., Hertel, W., Augsten, H.: Photophysiology of turion germination inSpirodela polyrhiza (L.) Schleiden. The cause of germination inhibition by overcrowding. - Biol. Plant.32: 420–428, 1990b.CrossRefGoogle Scholar
  11. Appenroth, K.-J., Hertel, W., Jungnickel, F., Augsten, H.: Influence of nutrient deficiency and light on turion formation inSpirodela polyrhiza (L.) Schleiden. - Biochem. Physiol. Pflanz.184: 395–403, 1989a.Google Scholar
  12. Appenroth, K.-J., Opfermann, J., Hertel, W., Augsten, H.: Photophysiology of turion germination inSpirodela polyrhiza (L.) Schleiden. II. Influence of after-ripening on germination kinetics. - J. Plant Physiol.135: 274–279, 1989b.Google Scholar
  13. Armstrong, J.S., Hemmerich, P., Traber, R.: Flavin sensitized photooxidation of (poly)amino acids: Fate of the photosubstrate. - Photochem. Photobiol.35: 747–751, 1982.CrossRefGoogle Scholar
  14. Augsten, H., Kunz, E., Appenroth, K.-J.: Photophysiology of turion germination inSpirodela polyrrhiza (L.) Schleiden. I. Phytochrome-mediated responses of light- and dark-grown turions. - J. Plant Physiol.132: 90–93, 1988.Google Scholar
  15. Bornkamm, R.: Die Rolle des Oxalats im Stoffwechsel höherer grüner Pflanzen. - Flora156: 139–172, 1965.Google Scholar
  16. Das, R.R., Gopal. B.: Vegetative propagation inSpirodela polyrhiza. - Trop. Ecol.10: 270–277, 1969.Google Scholar
  17. Guppy, H.-B.: On the habits ofLemna minor, Lemna gibba andLemna polyrrhiza. - J. Linn. Soc. Bot.30: 323–330, 1895.Google Scholar
  18. Horn, M., Hothorn, L.: Grundlagen der Statistik für Toxikologen. Vol. 5. - Verlag Gesundheit, Berlin 1990.Google Scholar
  19. Jacobs, D.L.: An ecological life-history ofSpirodela polyrrhiza (greater duckweed) with emphasis on the turion phase. - Ecol. Monogr.17: 437–469, 1947.CrossRefGoogle Scholar
  20. Jungnickel, F.: Phosphatbedarf und Mangelsymptome bei einigen axenisch kultivierten Lemnaceen. - Limnologica11: 469–478, 1978.Google Scholar
  21. Jungnickel, F., Augsten, H.:Spirodela polyrhiza - ein Biotest-System zur Erfassung phytoaktiver Substanzen. -Wiss. Z. Friedrich-Schiller-Univ. Jena, naturwiss. R.35: 613–629, 1986.Google Scholar
  22. Lacor, M.A.M.: On the influence of gibberellic acid and kinetin on the germination of turions ofSpirodela polyrhiza (L.) Schieiden. - Acta bot. neerl.18: 550–557, 1969.Google Scholar
  23. Landolt, E.: The Family ofLemnaceae - A Monographic Study. Vol.1. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae). - Veröff. Geobot. Inst. ETH, Stiftung Rubel, Zürich 1986.Google Scholar
  24. Landolt, E., Kandeler, R.: The Family ofLemnaceae - A Monographic Study. Vol.2. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae). - Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich 1987.Google Scholar
  25. Linné, C., von: Mantissa Plantarum (Stockholm)2: 294, 1771.Google Scholar
  26. Malek, L., Cossins, E.: The effect of red and blue light on turion production. - Plant Physiol.63: 156, 1979.CrossRefGoogle Scholar
  27. Malek, L., Cossins, E.: Senescence, turion development, and turion germination in nitrate- and sulfate-deficientSpirodela polyrhiza. Relationship between nutrient availability and exogenous cytokinins. - Can. J. Bot.61: 1887–1897, 1983.Google Scholar
  28. Mohr, H., Drumm-Herrel, H.: Interaction between blue/UV light and light operating through phytochrome in higher plants. -In: Smith, H. (ed.): Plants and the Daylight Spectrum. Pp. 423–441. Academic Press, London 1981.Google Scholar
  29. Newton, R.J., Shelton, D.R., Disharoon, S., Duffey, J.E.: Turion formation and germination inSpirodela polyrhiza. - Amer. J. Bot.65: 421–428, 1978.CrossRefGoogle Scholar
  30. Perry, T.O.: Dormancy, turion formation, and germination by different clones ofSpirodela polyrrhiza. - Plant Physiol.43: 1866–1869, 1968.PubMedGoogle Scholar
  31. Sibasaki, T, Oda, Y.: Heterogeneity of dormancy in the turions ofSpirodela polyrrhiza. - Plant Cell Physiol.20: 563–571, 1979.Google Scholar
  32. Smart, C.C., Longland, J., Trewavas, A.J.: The turion: a biological probe for the molecular action of abscisic acid. - In: Fox, J.E., Jacobs, M. (ed.): Molecular Biology of Plant Growth Control. Pp. 345–359. Alan Liss, New York 1987.Google Scholar
  33. Smart, C.C., Trewavas, A.J.: Abscisic acid-induced turion formation inSpirodela polyrrhiza L. I. Production and development of the turion. - Plant Cell Environ.6: 507–514, 1983.Google Scholar
  34. Teller, S., Appenroth, K.-J.: The appearance of glutamine synthctase in turions ofSpirodela polyrhiza (L.) Schleiden as regulated by blue and red light, nitrate and ammonium. - J. exp. Bot.45: 1219–1226, 1994.CrossRefGoogle Scholar
  35. Xyländer, M., Augsten, H., Appenroth, K.-J.: Influence of nickel on the life cycle of the duckweedSpirodela polyrhiza (L.) Schleiden. - J. Plant Physiol.142: 208–213, 1993.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 1996

Authors and Affiliations

  • K. -J. Appenroth
    • 1
  • S. Teller
    • 1
  • M. Horn
    • 1
    • 2
  1. 1.Institute of General BotanyUniversity of JenaJenaGermany
  2. 2.Institute of Medical StatisticsUniversity of JenaJenaGermany

Personalised recommendations