Science in China Series A: Mathematics

, Volume 44, Issue 3, pp 292–298 | Cite as

Extraneous fixed points of Euler iteration and corresponding Sullivan’s basin

  • Xinghua Wang
  • Danfu Han
Article

Abstract

The phenomenon of “numerical extraneous roots” of Euler’s iteration has been found. By systematic searching, some polynomials and the corresponding initial values are given, which make the fixed points of Euler’s iteration not the roots of the polynomials. For those repelling extraneous fixed points, the adjoint dynamical types of Sullivan’s basins are also studied. Finally, the fractal pictures are produced.

Keywords

Euler iteration extraneous fixed point numerical extraneous roots Sullivan’s basin fractal pictures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchard, P., Complex analytic dynamics on the Riemann sphere, Bull. (New Ser.) Amer. Math. Soc., 1984, 11: 85.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Lu Yinian, Complex Analytic Dynamics (in Chinese), Beijing: Science Press, 1997.Google Scholar
  3. 3.
    Ren Fuyao, Complex Analytic Dynamics (in Chinese), Shanghai: Press of Fudan University, 1997.Google Scholar
  4. 4.
    McMullen, C., Families of rational maps and iterative root finding algorithms, Annals of Math., 1987, 125: 467.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Curry, H., Garnett, L., Sullivan, D., On the iteration of a rational function: computer experiments with Newton’s method, Commun. Math. Phys., 1983, 91: 267.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fatou, P., Sur les equations fonctionnalles, Bull. Soc. Math. France, 1919, 47: 161; 1920, 48: 33-94; 208-314.MathSciNetGoogle Scholar
  7. 7.
    Si Zhongci, Yuan Yaxiang, Wonderful Computation, Changsha: Hunan Science and Technique Press, 1999.Google Scholar
  8. 8.
    Han Danfu, Wang Xinghua, On fixed points and Julia sets for iterations of two families, Chinese J. Numer. & Appl., 1997, 19(3): 94.Google Scholar
  9. 9.
    Sullivan, D., Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains, Ann. Math., 1985, 122: 401.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Vrscay, E. R., Julia sets and Mandelbrot-like associated with higher order Schroder rational iteration functions, Math. Comput., 1986, 46: 151.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Vrscay, E. R., Gilbert, W. J., Extraneous fixed points, basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions, Numer. Math., 1988, 52: 1.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Smale, S., On the efficiency of algorithms of analysis, Bull. (New Ser.) Amer. Math. Soc., 1985, 13: 87.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford: Oxford University Press, 1965.MATHGoogle Scholar
  14. 14.
    Wang Heyu, Hu Qingbiao, Wang Xinghua, Continuity tracing of algebraic curves, Journal of Computer-Aided Design & Computer Graphics, 2000, 12: 789.Google Scholar
  15. 15.
    Bryuno, A. D., Convergence of transformations of differential equations to normal forms, Dokl Akad Nauk USSR, 1965, 165:987.Google Scholar
  16. 16.
    Yoccoz, J. C., Linearisation des germes de diffeomorphismes holomorphes de (C, O), C. R. Acad. Sci. Paris, 1988, 36: 55.MathSciNetGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Xinghua Wang
    • 1
    • 2
  • Danfu Han
    • 1
  1. 1.Mathematics DepartmentZhejiang UniversityHangzhouChina
  2. 2.Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations