Skip to main content
Log in

Penicillinamidohydrolase inEscherichia coli

III. Catabolite repression, diauxie, effect of cAMP and nature of the enzyme induction

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Synthesis of penicillinamidohydrolase (penicillin acylase, EC 3.5.1.11) inEscherichia coli is subjected to the absolute catabolite repression by glucose and partial repression by acetate. Both types of catabolite repression of synthesis of the enzyme inEscherichia coli are substantially influenced by cyclic 3,′5′-adenosinemonophosphate (cAMP). Growth diauxie in a mixed medium containing glucose and phenylaoetic acid serving as carbon and energy sources is overcome by cAMP. cAMP does not influence the basal rate of the enzyme synthesis (without the inducer). Derepression of synthesis of penicillinamidohydrolasa by cAMP in a medium with glucose and inducer (phenylacetic acid) is associated with utilization of the inducer, due probably to derepression of other enzymes responsible for degradation of phenylacetic acid. Lactate can serve as a “catabolically neutral” source of carbon suitable for the maximum production of penicillinamidohydrolase. The gratuitous induction of the enzyme synthesis in a medium with lactate as the carbon and energy source and with phenylacetic acid is not influenced by cAMP; however, cAMP overcomes completely the absolute catabolite repression of the enzyme synthesis by glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson R. L., Wood W. A.: Carbohydrate metabolism in microorganisms.Annu. Rev. Microbiol. 23, 539 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Arditti R. R., Scaife J. G., Beckwith J. R.: The nature of mutants in thelac-promoter region.J. Mol. Biol. 38, 421 (1968).

    Article  PubMed  CAS  Google Scholar 

  • De Crombrugghe B., Perlman R. L., Varmus H. E., Pastan I.: Regulation of inducible enzyme synthesis inEscherichia coli by cyclic adenosine 3′,5′-monophosphate.J. Biol. Chem. 244, 5828 (1969).

    Google Scholar 

  • Golub E. I., Garayev M. M., Romanova N. B.: Mutants ofEscherichia coli with suppressed glucose transport-producers of penicillin acylase.Antibiotiki 18, 882 (1973).

    PubMed  CAS  Google Scholar 

  • Jost J. P., Rickenberg H. V.:Cyclic AMP. Annu. Rev. Biochem. 40, 741 (1971).

    Article  CAS  Google Scholar 

  • Kaufmann W., Bauer K.: The production of penicillin amidase byEscherichia coli ATCC 9637.J. Gen. Microbiol. 35 (Soc. Gen. Microbiol. Proc. IV), p. iv (1964).

    Google Scholar 

  • Levitov M. M., Klapovskaya K. I., Kleyner G. I.: Induced biosynthesis of acylase inEscherichia coli.Mikrobiologiya 36, 912 (1967).

    CAS  Google Scholar 

  • Magasanik B.: Catabolite repression.Cold Spr. Harb. Symp. Quant. Biol. 26, 249 (1961).

    CAS  Google Scholar 

  • McFall E.: Role of adenosine 3′,5′-cyclic monophosphate and its specific binding protein in the regulation of D-serine deaminase synthesis.J. Bacterial. 113, 781 (1973).

    CAS  Google Scholar 

  • Moses V., Sharp P. B.: Adenosine 3′,5′-cyclic monophosphate and catabolite repression inEscherichia coli.Biochem. J. 118, 481 (1970).

    PubMed  CAS  Google Scholar 

  • Paigen K., Beverly W.: Catabolite repression and other control mechanisms in carbohydrate utilisation, p. 251, in A. H. Rosse and J. F. Wilkinson (Eds.):Advances in Microbial Physiology, vol. 4. Academic Press, London—New York 1970.

    Google Scholar 

  • Pan S. C., Perlman D.: Determination of phenylacetic acid and phenylacetamides in samples from penicillin fermentation.Anal. Chem. 26, 1432 (1954).

    Article  CAS  Google Scholar 

  • Pastan I.: Current directions in research on cyclic AMP, p. 65, in C. B. Anfisen, R. F. Goldberger and A. N. Schechter (Eds.):Current Topics in Biochemistry. Academic Press, New York—London 1972.

    Google Scholar 

  • Perlman R. L., Pastan I.: Cyclic 3′,5′-AMP: stimulation of beta-galactosidase and tryptophanase induction inEscherichia coli.Biochim. Biophys. Res. Commun. 30, 656 (1968a).

    Article  CAS  Google Scholar 

  • Perlman R. L., Pastan I.: Regulation of beta-galactosidase synthesis inEscherichia coli by cyclic adenosine 3′,5′-monophosphate.J. Biol. Chem. 243, 5420 (1968b).

    PubMed  CAS  Google Scholar 

  • Perlman R. L., De Crombrugghe B., Pastan I.: Cyclic AMP regulates catabolite and transient repression inEscherichia coli.Nature 233, 810(1969).

    Article  Google Scholar 

  • Rickenberg H. V., Hsie A. W., Janecek J.: The CR mutation and catabolite repression inEscherichia coli.Biochem. Biophys. Res. Commun. 31, 603 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Silverstone A. E., Magasanik B., Reznikoff W. S., Miller J. H., Beckwith J. R.: Catabolite sensitive site of thelac-operon.Nature 221, 1012 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Simon M., Stboman D., Apirion D.: Reversion of catabolite repression by cyclic-AMP. Its presence is necessary during initiation of newlac-m-RNA molecules.Bacteriol. Proc. Amer. Soc. Microbiol. P192 (1971).

  • Szentirmai A.: Production of penicillin acylase.Appl. Microbiol. 12, 185 (1964).

    PubMed  CAS  Google Scholar 

  • Tyler B., Magasanik B.: Molecular basis of transient repression of beta-galactosidase inEscherichia coli.J. Bacteriol. 97, 550 (1969).

    PubMed  CAS  Google Scholar 

  • Tyler B., Magasanik B.: Physiological basis of transient repression of catabolite enzymes inEscherichia coli.J. Bacteriol. 102, 411 (1970).

    PubMed  CAS  Google Scholar 

  • Varmus H. E., Perlman R. L., Pastan I.: Regulation oflac-messenger ribonucleic acid synthesis by cyclic adenosine 3′,5′-monophosphate and glucose.J. Biol. Chem. 245, 2259 (1970).

    PubMed  CAS  Google Scholar 

  • Vajtísek V., Slezák J., Culík K.: Method of obtaining microbial mutants producing penicillin acylase, especially fromEscherichia coli. Czechosl. Patent No. 1622–74 (1973).

  • Vojtísek V., Slezák J.: Penicillinamidohydrolase inEscherichia coli. I. Substrate specificity.Folia Microbiol. 20, 224 (1975).

    Article  Google Scholar 

  • Vojtísek V., Slezák J.: Penicillinamidohydrolase inEscherichia coli, II. Synthesis of the enzyme, kinetics and specificity of its induction and the effect of O2.Folia Microbiol. 20, 289 (1975).

    Article  Google Scholar 

  • Zubay G., Schwartz D., Beckwith J.: Mechanism of activation of catabolite sensitive genes: a positive control system.Proc. Natl. Acad. Sci. USA 66, 104 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Yudkin M. D.: Effect of point mutation in the lac promoter on transient and severe catabolite repression of thelac-operon ofEscherichia coli.Biochem. J. 123, 579 (1971).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vojtíek, V., Slezák, J. Penicillinamidohydrolase inEscherichia coli . Folia Microbiol 20, 298–306 (1975). https://doi.org/10.1007/BF02878111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02878111

Keywords

Navigation