Science in China Series A: Mathematics

, Volume 42, Issue 12, pp 1316–1322 | Cite as

Growth mechanism and quantum confinement effect of silicon nanowires

  • Sunqi Feng
  • Dapeng Yu
  • Hongzhou Zhang
  • Zhigang Bai
  • Yu Ding
  • Qingling Hang
  • Yinghua Zou
  • Jingjing Wang
Article

Abstract

The methods for synthesizing one-dimensional Si nanowires with controlled diameter are introduced. The mechanism for the growth of Si nanowires and the growth model for different morphologies of Si nanowires are described, and the quantum confinement effect of the Si nanowires is presented.

Keywords

one-dimensional nano-structure Si nawo wires VLS growth mechanism quantum confinement effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima, S., Helical microtubules of graphitic carbon,Nature, 1991, 354: 56.CrossRefGoogle Scholar
  2. 2.
    Chopra, N G., Luyken, R. J., Cherrey, K. et al., Boron nitride nanotubes,Science, 1995, 269: 966.CrossRefGoogle Scholar
  3. 3.
    Feldman, Y., Wasserman, E., Srolovitz, D. J. et al., High-rate, gas-phase growth of MoS2, nested inorganic fullerenes and nanotubes,Science, 1995, 267: 222.CrossRefGoogle Scholar
  4. 4.
    Morales, A. M., Lieber, M. et al., A laser ablation method for the synthesis of crystalline semiconductor nanowires,Science, 1998, 279: 208.CrossRefGoogle Scholar
  5. 5.
    Yu, D. P., Lee, C. S., Bello, I. et al., Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature,Solid State Commun., 1998, 105: 403.CrossRefGoogle Scholar
  6. 6.
    Gamaly, E. G.,Carbon Nanotubes: Preparation and Properties (ed. Ebbesen, T. W.), Florida: CRC Press, 1997, 163.Google Scholar
  7. 7.
    Amelinckx, S., Zhang, X. B., Bernaerts, D. et al., A formation mechanism for catalytically grown helix-shaped graphite nanotubes,Science, 1994, 265: 635.CrossRefGoogle Scholar
  8. 8.
    Frank, S., Poncharal, P., Wang, Z. L. et al., Carbon nanotube quantum resistors,Nature, 1998, 280.Google Scholar
  9. 9.
    Wong, E. W., Sheeham, P. E., Lieber, M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,Science, 1997, 277: 1971.CrossRefGoogle Scholar
  10. 10.
    de Heer, W. A., Chatelain, A., Ugarte, D., A carbon nanotube field-emission electron source,Science, 1995, 270: 1179.CrossRefGoogle Scholar
  11. 11.
    Nagy, G., Levy, M., Scarmozzino, R. et al., Carbon nanotube tipped atomic force microscopy for measurement of 100 rm etch norphology on semionductors,Appl. Phys. Lett., 1998, 73: 529.CrossRefGoogle Scholar
  12. 12.
    Yu, D. P., Bai, Z. G., Ding, Y. et al., Nanoscale silicon wires synthesized using simple physical evaporation,Appl. Phys. Lett., 1998, 72: 3458.CrossRefGoogle Scholar
  13. 13.
    Zhang, H. Z., Yu, D. P., Ding, Y. et al., Dependence of the silicon nanowires diameter on the ambient pressure,Appl. Phys. Lett., 1998, 73: 3396.CrossRefGoogle Scholar
  14. 14.
    Goldstein, A. N., Echer, C. M., Alivisatos, A. P., Melting in semiconductor nanocrystals,Science, 1992, 256: 1425.CrossRefGoogle Scholar
  15. 15.
    Givargizov, E. I., Periodic instability in whisker growth,J. Cryst. Growth, 1975, 31: 20.CrossRefGoogle Scholar
  16. 16.
    Zhou, G. W., Zhang, Z., Bai, Z. G. et al., Transmission electron microscopy study on Si nanowires,Appl. Phys. Lett., 1998, 73: 677.CrossRefGoogle Scholar
  17. 17.
    Canham, L. T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,Appl. Phys. Lett., 1990, 57: 1046.CrossRefGoogle Scholar
  18. 18.
    Liao, L. S., Bao, X. M., Zhang, X. Q. et al., Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,Appl. Phys. Lett., 1996, 68: 850.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Sunqi Feng
    • 1
  • Dapeng Yu
    • 1
  • Hongzhou Zhang
    • 1
  • Zhigang Bai
    • 1
  • Yu Ding
    • 1
  • Qingling Hang
    • 1
  • Yinghua Zou
    • 1
  • Jingjing Wang
    • 1
  1. 1.Department of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic PhysicsPeking UniversityBeijingChina

Personalised recommendations