Fibers and Polymers

, Volume 7, Issue 4, pp 380–388

Green composites. II. Environment-friendly, biodegradable composites using ramie fibers and soy protein concentrate (SPC) resin

Article

Abstract

Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65 % (on weight basis) ramie fibers and SPC resin. The tensile strength and Young’s modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young’s modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

Keywords

Green composite Ramie fiber Soy protein concentrate Tensile properties Flexural properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Kokta, R. Chen, C. Daneault, and J. L. Valade,Polym. Compos.,4, 229 (1983).CrossRefGoogle Scholar
  2. 2.
    C. Pavithran, P. S. Mukjerjee, M. Brahmakumar, and A. D. Damodaran,J. Mater. Sci.,26, 455 (1991).CrossRefGoogle Scholar
  3. 3.
    K. Joseph, S. Thomas, C. Pavithran, and M. Brahmakumar,J. Appl. Polym. Sci.,47, 1731 (1993).CrossRefGoogle Scholar
  4. 4.
    The Corporate Units in the Daimler-Benz Group,Daimler-Benz High Tech Report,2, 1 (1995).Google Scholar
  5. 5.
    A. K. Mohanty and M. Misra,Polym-Plast. Technol. Eng.,34, 729 (1995).CrossRefGoogle Scholar
  6. 6.
    K. Joseph, S. Thomas, and C. Pavithran,Polymer,37, 5139 (1996).CrossRefGoogle Scholar
  7. 7.
    J. H. Pedro and D. J. A. Manuel,J. Appl. Polym. Sci.,65, 197 (1997).CrossRefGoogle Scholar
  8. 8.
    M. Wollerdorfer and H. Bader,Industrial Crops and Products,8, 105 (1998).CrossRefGoogle Scholar
  9. 9.
    S. Luo and A. N. Netravali,J. Mater. Sci.,34, 3709 (1999).CrossRefGoogle Scholar
  10. 10.
    S. Luo and A. N. Netravali,Polym. Composite.,20, 367 (1999).CrossRefGoogle Scholar
  11. 11.
    A. K. Mohanty, M. Misra, and G. Hinrichsen,Macromol. Mater. Eng.,276, 1 (2000).CrossRefGoogle Scholar
  12. 12.
    S. Luo and A. N. Netravali,J. Adhes. Sci. Technol.,15, 423 (2001).CrossRefGoogle Scholar
  13. 13.
    P. Lodha and A. N. Netravali,J. Mater. Sci.,37, 3657 (2002).CrossRefGoogle Scholar
  14. 14.
    S. Nam, M.S. Thesis, Cornell University, Ithaca, 2002.Google Scholar
  15. 15.
    S. Nam and A. N. Netravali,J. Adhes. Sci. Technol.,18, 1063 (2004).CrossRefGoogle Scholar
  16. 16.
    P. Lodha and A. N. Netravali,Polym. Compos.,26, 647 (2005).CrossRefGoogle Scholar
  17. 17.
    P. Lodha and A. N. Netravali,Compos. Sci. Technol.,65, 1211 (2005).CrossRefGoogle Scholar
  18. 18.
    S. Chabba and A. N. Netravali,J. Mater. Sci.,40, 6263 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Chabba and A. N. Netravali,J. Mater. Sci.,40, 6275 (2005).CrossRefGoogle Scholar
  20. 20.
    S. Nam and A. N. Netravali,Fibers and Polymers,7, 372 (2006).Google Scholar
  21. 21.
    Y.-P. Ly, L. A. Johnson, and J. Jane, “Biopolymers from Renewable Resources” (D. L. Kaplan Ed.), p.144, Springer, New York, 1998.Google Scholar
  22. 22.
    T. E. Creighton, “Proteins: Structure and Molecular Properties”, 2nd ed. p. 1, Freeman, New York, 1993.Google Scholar
  23. 23.
    J. C. Cheftel, J.-L. Cuq, and D. Lorient, “Food Chemistry” (O. R. Fennema Ed.), pp.245, 279, 289, 336, and 343, Marcel Dekker Inc, New York, 1985.Google Scholar
  24. 24.
    F. Liang, Y. Q. Wang, and X. S. Sun,J. Polym. Eng.,19, 383 (1999).Google Scholar
  25. 25.
    J. J. Kester and O. R. Fennema,Food Technol.,40, 47 (1986).Google Scholar
  26. 26.
    I. Paetau, C. Z. Chen, and J. L. Jane,Ind. Eng. Chem. Res.,33, 1821 (1994).CrossRefGoogle Scholar
  27. 27.
    A. Gennadios, V. M. Ghorpade, C. L. Weller, and M. A. Hanna,Trans. ASAE,39, 575 (1996).Google Scholar
  28. 28.
    S. F. Thames and L. Zhou “Proceedings of the International Conference on Composites Engineering-5”, Las Vegas, p.887, 1998.Google Scholar
  29. 29.
    A. Gennadios, A. H. Brandenburg, C. L. Weller, and R. F. Testin,J. Agric. Food Chem.,41, 1835 (1993).CrossRefGoogle Scholar
  30. 30.
    H. M. Lai, G. W. Padua, and A. H. Wei,Cereal Chem,74, 49 (1995).Google Scholar
  31. 31.
    X. Z. Sun and K. Bian,J. Am. Oil. Chem. Soc.,76, 977 (1999).CrossRefGoogle Scholar
  32. 32.
    J. W. Rhim, A. Gennadios, A. Handa, C. L. Weller, and M. A. Hanna,J. Agric. Food Chem.,48, 4937 (2000).CrossRefGoogle Scholar
  33. 33.
    F. Ayhllon-Meixueiro, C. Vaca-Garcia, and F. Silvestre,J. Agric. Food Chem.,48, 3032 (2000).CrossRefGoogle Scholar
  34. 34.
    X. Q. Mo, J. Hu, X. S. Sun, and J. A. Ratto,Ind. Crop. Prod.,14, 1 (2001).CrossRefGoogle Scholar
  35. 35.
    X. Q. Mo and X. Z. Sun,J. Am. Oil. Chem. Soc.,78, 867 (2001).CrossRefGoogle Scholar
  36. 36.
    N. S. Hettiarachchy, U. Kalapathy, and D. J. Myers,J. Am. Oil. Chem. Soc.,72, 1461 (1995).CrossRefGoogle Scholar
  37. 37.
    X. Z. S. Sun, H. R. Kim, and X. Q. Mo,J. Am. Oil. Chem. Soc.,76, 117 (1999).CrossRefGoogle Scholar
  38. 38.
    J. Gueguen, G. Viroben, P. Noireaux, and M. Subirade,Ind. Crop. Prod.,7, 149 (1998).CrossRefGoogle Scholar
  39. 39.
    R. N. Obrien and K. Hartman,J. Polym. Sci. Part C Polymer Symposium,34, 293 (1971).Google Scholar
  40. 40.
    B. D. Agarwal and L. J. Broutman, “Analysis and Performance of Fiber Composites”, p.15, John Wiley & Sons, New York, 1980.Google Scholar
  41. 41.
    D. Hull, “An Introduction to Composite Materials”, pp. 36–38, Cambridge University Press, Cambridge, 1981.Google Scholar
  42. 42.
    B. D. Harper, G. H. Staab, and R. S. Chen,J. Compos. Mater.,21, 280 (1987).CrossRefGoogle Scholar
  43. 43.
    J. M. Tang, W. I. Lee, and G. S. Springer,J. Compos. Mater.,21, 421 (1987).CrossRefGoogle Scholar
  44. 44.
    F. Garcia-Zetina, E. Martinez, A. Alvarez-Castillo, and V. M. Castano,J. Reinf. Plast. Comp.,14, 641 (1995).Google Scholar

Copyright information

© The Korean Fiber Society 2006

Authors and Affiliations

  1. 1.Fiber Science ProgramCornell UniversityIthacaUSA

Personalised recommendations