Fibers and Polymers

, Volume 7, Issue 3, pp 276–285 | Cite as

Numerical implementation of modified Coulomb-Mohr yield criterion for anisotropic and asymmetric materials

  • Myoung-Gyu Lee
  • Ji Hoon Kim
  • Hansun Ryou
  • Kwansoo Chung
  • Jae Ryoun Youn
  • Tae Jin Kang
Article

Abstract

Development and numerical implementation for an elastoplastic constitutive model for anisotropic and asymmetric materials are presented in this paper. The Coulomb-Mohr yield criterion was modified to consider both the anisotropic and asymmetric properties. The modified yield criterion is an isotropic function of the principal values of a symmetric matrix which is linearly transformed from the Cauchy stress space. In addition to the constitutive equation, the numerical treatment for the singularity in the vertex region of yield surface and stress integration algorithm based on elastoplasticity were presented. In order to assess the accuracy of numerical algorithm, isoerror maps were considered. Also, extension of a strip with a circular hole was simulated and results compared with those obtained using the (smooth) Mises yield criterion to validate stress output for a complex stress state.

Keywords

Anisotropy Asymmetry Elastoplasticity Coulomb-Mohr yield criterion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. T. Koiter, “General Theorems for Elastic-plastic Solids. Progress in Solid Mechanics 6”, (I. N. Sneddon and R. Hill Eds.), pp.167–221, North-Holland Publishing Company, Amsterdam, 1960.Google Scholar
  2. 2.
    D. Peric and E. A.de S. Neto,Computer Methods in Applied Mechanics and Engineering,171, 463 (1999).CrossRefGoogle Scholar
  3. 3.
    R. Hill,Proc. Roy. Soc. London,A193, 189 (1948).Google Scholar
  4. 4.
    F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. H. Choi, and E. Chu,International Journal of Plasticity,19, 1297 (2003).CrossRefGoogle Scholar
  5. 5.
    J. W. Yoon, D. Y. Yang, and K. Chung,Computer Methods in Applied Mechanics and Engineering,174, 23 (1999).CrossRefGoogle Scholar
  6. 6.
    W. Prager,Proc. Inst. Mech. Eng.,169, 41 (1955).CrossRefGoogle Scholar
  7. 7.
    H. Ziegler,Quart. Appl. Math.,17, 55 (1959).Google Scholar
  8. 8.
    J. C. Simo and T. J. R. Hughes, “Computational Inelasticity”, Springer-Verlag, New York, 1998.Google Scholar
  9. 9.
    R. D. Krieg and D. B. Krieg,Journal of Pressure Vessel Technology,99, 510 (1977).Google Scholar

Copyright information

© The Korean Fiber Society 2006

Authors and Affiliations

  • Myoung-Gyu Lee
    • 1
  • Ji Hoon Kim
    • 1
  • Hansun Ryou
    • 1
  • Kwansoo Chung
    • 1
  • Jae Ryoun Youn
    • 1
  • Tae Jin Kang
    • 1
  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations