Advertisement

Theory and simulation of buoyancy-driven convection around growing protein crystals in microgravity

  • L. CarotenutoEmail author
  • J. H. E. Cartwright
  • D. Castagnolo
  • J. M. García Ruiz
  • F. Otálora
Article

Abstract

We present an order-of-magnitude analysis of the Navier-Stokes equations in a time-dependent, incompressible and Boussinesq formulation. The hypothesis employed of two different length scales allows one to determine the different flow regimes on the basis of the geometrical and thermodynamical parameters alone, without solving the Navier-Stokes equations. The order-of-magnitude analysis is then applied to the field of protein crystallization, and to the flow field around a crystal, where the driving forces are solutal buoyancy-driven convection, from density dependence on species concentration, and sedimentation caused by the different densities of the crystal and the protein solution. The main result of this paper is to provide predictions of the conditions in which a crystal is growing in a convective regime, rather than in the ideal diffusive state, even under the typical microgravity conditions of space platforms.

Keywords

Ferritin Lysozyme International Space Station Depletion Zone Residual Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. R. Helliwell: Macromolecular crystallography with synchrotron radiation, Cambridge University Press (1992).Google Scholar
  2. 2.
    A. McPherson: Preparation and analysis of protein crystals, Krieger Publishing (1982); A. Ducruix and R. Giegé, editors, Crystallization of nucleic acids and proteins, Oxford University Press (1999).Google Scholar
  3. 3.
    F. Otálora, M. L. Novella, J. A. Gavira, V. R. Thomas andJ. M. García Ruiz: Experimental evidence for the stability of the depletion zone around growing protein crystal under microgravity, Acta Cryst D 57, 412–417 (2001).CrossRefGoogle Scholar
  4. 4.
    L. G. Napolitano: Surface and buoyancy driven free convection, Acta Astronautica 9, 199–215 (1982).CrossRefGoogle Scholar
  5. 5.
    G. Russo and L. G. Napolitano: Order of magnitude analysis of unsteady Marangoni and buoyancy free convection, IAF-84-150, 35th Congress, Switzerland, (1984).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz: Fluid Mechanics, 2nd Ed., Pergamon (1987).Google Scholar
  7. 7.
    L. K. Steinrauf: Preliminary X-ray data for some new crystalline forms of β-lactoglobulin and hen-egg-white lysozyme, Acta Cryst. 12, 77 (1959); S. B. Dubin, G. Feher, and G. B. Benedek, Study of the chemical denaturation of lysozyme by optical mixing spectroscopy Biochem. 12, 714–719 (1973); W. J. Fredericks, M. C. Hammonds, S. B. Howard, and F. Rosenberger, Density, thermal expansivity, viscosity and refractive index of lysozyme solutions at crystal growth concentrations, J. Cryst. Growth 141, 183–192 (1994).CrossRefGoogle Scholar
  8. 8.
    D. N. Petsev, B. R. Thomas, S.-T. Yau, andP. G. Vekilov: Interactions and aggregation of apoferritin molecules in solution: Effects of added electrolytes, Biophys. J. 78, 2060–2069 (2000).CrossRefGoogle Scholar
  9. 9.
    A. J. Fletcher: Computational Techniques for Fluid Dynamics, vol 2, Springer (1991).Google Scholar
  10. 10.
    R. De Lombard: Compendium of Information for Interpreting the Microgravity Environment of the Orbiter Spacecraft, NASA Tech. Memorandum, 107032, 1–40, (1996).Google Scholar

Copyright information

© Z-Tec Publishing 2002

Authors and Affiliations

  • L. Carotenuto
    • 1
    Email author
  • J. H. E. Cartwright
  • D. Castagnolo
  • J. M. García Ruiz
  • F. Otálora
  1. 1.MARS CenterNapoliItaly

Personalised recommendations