American Journal of Potato Research

, Volume 83, Issue 5, pp 397–408

Effects of pest and soil management systems on potato diseases



Long-term cropping systems research is important in order to reduce production costs, to control crop pests, and to optimize the sustainability of agro-ecosystems. Soil amendment use, improved disease management practices, and careful cultivar choice are some of the potential components for improving potato production systems. This research was conducted in long-term cropping systems plots in order to evaluate the impact of soil amendments, pest management practices, and cultivar on foliar and soil-borne potato diseases and to assess the relationships of soil and pest management practices to disease levels and soil microbial activity. Fungicide applications for management of foliar diseases varied between the pest management systems (e.g., biological, reduced input, and conventional). Incidence of potato foliar diseases was quantified five times during the cropping season. The impact of soil amendment and pest management practices on soil microbial activity and tuber-borne diseases was also investigated. Low incidences of foliar and selected soil-borne diseases were recorded. Disease levels varied between years, cultivars, pest management, and soil amendments. Significant differences between cultivars were detected for early blight, white mold, and black dot. The cultivar Superior had higher incidence of white mold and black dot, while cv Atlantic had higher early blight incidence. Pest management system significantly affected foliar early blight incidence in 1998, but not in 1997. Pest management system did not affect late blight, white mold, or black dot incidence, or tuber disease incidence in either year. The addition of soil amendments significantly impacted tuber black dot incidences. Microbial activity responded to increasing temperature as the season progressed and was significantly enhanced by the addition of manure and compost soil amendments; however, lower disease incidence was not associated with increased microbial activity. While pest management practices were not major determinants of disease levels in these experiments, the results show that soil amendments can increase incidence of selected tuber diseases and microbial activity in soils.

Additional key words

Potato diseases cropping systems soil amendments microbial activity compost manure Solanum tuberosum 


La investigación sobre sistemas de cultivo a largo plazo es importante para reducir costos de producción, controlar enfermedades y optimizar la sostenibilidad de los sistemas agro ecológicos. Las enmiendas de suelo, prácticas mejoradas de manejo de enfermedades y cuidadosa elección del cultivar, son algunos de los componentes potenciales para mejorar los sistemas de producción de papa. Esta investigación fue realizada en parcelas de cultivo a largo plazo, con el objeto de evaluar el impacto de enmiendas de suelo, manejo de enfermedades y cultivar empleado, sobre las enfermedades foliares y las transmitidas por el suelo y de evaluar las relaciones del suelo y prácticas de manejo de plagas con los niveles de enfermedad y actividad microbiana del suelo. Las aplicaciones de funguicidas para el control de enfermedades foliares, varió con los sistemas de manejo sanitario (biológico, gasto reducido y convencional). La incidencia de enfermedades foliares se evaluó cinco veces durante el desarrollo del cultivo. También se investigó el efecto de enmiendas, prácticas de control sobre la actividad microbiana del suelo y las enfermedades transmitidas por tubérculos. Se registró baja incidencia de enfermedades foliares y transmitidas por el suelo. Los niveles de enfermedad variaron entre años, cultivares, manejo sanitario y enmiendas de suelo. Se detectaron diferencias significativas entre cultivares para tizón temprano, moho blanco y mancha negra. La variedad Superior tuvo la más alta incidencia de moho blanco y mancha negra, mientras que el cultivar Atlantic tuvo mayor incidencia de tizón temprano. El sistema de manejo sanitario afectó significativamente la incidencia de tizón temprano, moho blanco o mancha negra en 1998, pero no en 1997. El sistema de manejo sanitario no afectó la incidencia de tizón tardío, moho blanco, mancha negra o enfermedades al tubérculo en ambos años. La aplicación de enmiendas al suelo influenció significativamente la incidencia de mancha negra en el tubérculo. La actividad microbiana respondió al aumento de temperatura a medida del avance de la estación y fue significativamente incrementada cuando se agregó al suelo enmiendas de estiércol y compost; sin embargo, la baja incidencia de enfermedad no estuvo asociada con el incremento de la actividad microbiana. Aunque las prácticas de manejo sanitario no fueron un determinante del nivel de enfermedades en estos experimentos, los resultados demuestran que las enmiendas pueden incrementar la incidencia de determinadas enfermedades al tubérculo y la actividad microbiana del suelo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adams SS and WR Stevenson. 1990. Water management, disease development, and potato production. Am Potato J 67:3–11.Google Scholar
  2. Baker KM, WW Kirk, J Andersen and JM Stein. 2004. A problem case study: Influence of climatic trends on late blight epidemiology in potatoes. Acta Hort 638:37–42.Google Scholar
  3. Borst G. 1986. Observations on a biological root rot control trial in the Fallbrook Area. Calif Avocado Soc 70:107–110.Google Scholar
  4. Coffey MD. 1984. An integrated approach to the control of avocado root rot. Calif Avocado Soc 68:61–68.Google Scholar
  5. Cook RJ, MG Boosalis and B Doupnik. 1978. Influence of crop residues on plant diseases.In: Crop Residue Mangement Systems. ASA Spec Publ 31. Madison, WI. pp 147–163.Google Scholar
  6. Davis JR and RE McDole. 1979. Influence of cropping sequences of soilborne populations ofVerticillium dahliae andRhizoctonia solani.In: B Schippers and W. Gams, (eds), Soil-borne Plant Pathogens. Academic Press, New York. pp 399–405.Google Scholar
  7. Dempster JP and TH Coaker. 1974. Diversification of crop ecosystems as a means of controlling pests.In: DP Jones and ME Solomon (eds), Biology in Pest and Disease Control. Blackwell Scientific Publications, Oxford. pp 106–114.Google Scholar
  8. Folsom D, GW Simpson and R Bonde. 1955. Maine potato diseases, insects and injuries. Maine Agric Exp Sta Bulletin No 469.Google Scholar
  9. Gallandt ER, EB Mallory, AR Alford, FA Drummond, E Groden, M Liebman, MC Marra, JC McBurnie and GA Porter. 1998. Comparison of alternative pest and soil management strategies for Maine potato production systems. Amer J Altern Agric 13:146–161.Google Scholar
  10. Green RJ and GC Papavizas. 1967. The effect of carbon source, carbon to nitrogen ratios and organic amendments on survival of propagules ofVerticillium albo-atrum in soil. Phytopathology 58:567–570.Google Scholar
  11. Groves CL. 2002. Characterization ofPhytophthora infestans from Maine during 1999 to 2000. Amer J Potato Res 79:325–333.CrossRefGoogle Scholar
  12. Honeycutt CW, WM Clapham and SS Leach. 1996. Crop rotation and N fertilization effects on growth, yield, and disease incidence in potato. Am Potato J 73:45–61.CrossRefGoogle Scholar
  13. Hoitink HAJ and PC Fahy. 1986. Basis for the control of soil borne plant pathogens with compost. Ann Rev Phytopath 24:93–114.CrossRefGoogle Scholar
  14. Huber DM and RD Watson. 1970. Effect of organic amendment on soilborne plant pathogens. Phytopathology 70:22–26.CrossRefGoogle Scholar
  15. James C. 1971. A manual of assessment keys for plant diseases. Canada Department of Agriculture Publication No 1458.Google Scholar
  16. Johnson SB, M Kleinhenz, JD Dwyer, T Griffin, OM Olanya, DH Lambert and GA Porter. 1998. First report of white mold on soybean in Maine. Plant Dis 82:832.CrossRefGoogle Scholar
  17. Krause RA, LB Massie and RA Hyre. 1975. BLIGHTCAST, a computerized forecast of potato late blight. Plant Dis Rep 59:95–98.Google Scholar
  18. Larkin RP. 2003. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization and fatty acid profiles. Soil Biol Biochem 35:1451–1466.CrossRefGoogle Scholar
  19. Larkin RP, M Albert and TS Griffin. 2003. Control of soilborne pathogens of potato withBrassica crop rotations. Phytopathology 93:S48. (abst)Google Scholar
  20. Larkin RP and CW Honeycutt. 2002. Crop rotation effects on Rhizoctonia canker and black scurf of potato in central Maine, 1999–2000. Biological and Cultural Tests for Control of Plant Diseases (online) Report 17:PT05, The American Phytopathological Society, St. Paul, MN.Google Scholar
  21. Larkin RP and CW Honeycutt. 2006. Effects of different 3-year cropping systems on soil microbial communities and soil-borne diseases of potato. Phytopathology 96:68–79.CrossRefPubMedGoogle Scholar
  22. Larkin RP, CW Honeycutt and TS Griffin. 2006. Effect of swine and dairy manure amendments on microbial communities in three soils as influenced by environmental conditions. Biol Fert Soils, in press.Google Scholar
  23. Lambert DH, L Levy, VA Mavrodieva, SB Johnson, MJ Babcock and ME Vayda. 2003. First report ofPotato mop-top virus on potato from the United States. Plant Dis 87:668.CrossRefGoogle Scholar
  24. Lambert DH, ML Powelson and WR Stevenson. 2005. Nutritional interactions influencing diseases of potato. Amer J Potato Res 82:309–319.Google Scholar
  25. Lambert DH and B Salas. 1996. Plant Diseases.In: The ecology, economics and management of potato cropping systems: A report of the first four years of the Maine Potato Ecosystem Project. Maine Agric Forest Exp Sta Bulletin No 843. pp 119–128.Google Scholar
  26. Marshall D. 1991. Crop diversity for plant pathogen control.In: D Pimentel (ed), CRC Handbook of Pest Management in Agriculture, Vol. 1. CRC Press, Boca Raton, FL. pp 569–577.Google Scholar
  27. McDole RE and CE Dallimore. 1978. Continuation of cropping sequence studies on coarse textured soils in southeastern Idaho. Am Potato J 55:221–225.CrossRefGoogle Scholar
  28. Olanya OM, DH Lambert, SB Johnson and JD Dwyer. 2002. Assessment of the impact of midseason late blight development on yield of Russet Norkotah. Int J Pest Manag 48:139–146.CrossRefGoogle Scholar
  29. Olivier C and R Loria. 1998. Detection ofHelminthosporium solani from soil and plant tissue with species-specific PCR primers. FEMS Microbiol Letters 168:235–241.CrossRefGoogle Scholar
  30. Peters RD, AV Sturz, MR Carter and JB Sanderson. 2004. Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Can J Soil Sci 84:397–402.Google Scholar
  31. Powelson ML, KB Johnson and RC Rowe. 1993. Management of diseases caused by soilborne pathogens.In: RC Rowe (ed), Potato Health Management. American Phytopathological Society, St. Paul, MN. pp 149–158.Google Scholar
  32. Raposo R, DS Wilks and WE Fry. 1993. Evaluation of potato late blight forecasts modified to include weather forecasts: a simulation analysis. Phytopathology 83:103–108.CrossRefGoogle Scholar
  33. Reeves AF, OM Olanya, JH Hunter and JM Wells. 1999a. Evaluation of potato varieties and selections for resistance to bacterial soft rot. Amer J Potato Res 76:183–189.Google Scholar
  34. Reeves AF, OM Olanya, GH Sewell and DH Lambert. 1999b. Maine, common scab and net necrosis.In: Performance evaluations of potato clones and varieties in the northeastern states—1997. Maine Agric Forest Exp Sta Misc Pub No 741. pp 32–33.Google Scholar
  35. Teng PS and HL Bissonnette. 1985. Estimating potato yield responses from chemical control of early blight in Minnesota. Am Potato J 62:595–606.CrossRefGoogle Scholar
  36. Thurston HD. 1992. Sustainable Practices for Plant Disease Management in Traditional Farming Systems. Westview Press, San Francisco.Google Scholar
  37. SAS Institute Inc. 2003. SAS/STAT Guide for Personal Computers, Vers 6. SAS Institute Inc., Cary, NC.Google Scholar
  38. Schnurer J and T Rosswall. 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261.PubMedGoogle Scholar
  39. Shtienberg D and WE Fry. 1990. Quantitative analysis of host resistance, fungicide, and weather effects on potato early and late blight using computer simulation models. Am Potato J 67:277–286.Google Scholar
  40. Weinhold AR, T Bowman and DH Hall. 1978. Rhizoctonia disease in California. Am Potato J 55:56–57.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.USDA-ARS, New England Plant, Soil and Water LaboratoryOronoUSA
  2. 2.Department of Plant, Soil and Environmental Sciences, Deering HallUniversity of MaineOronoUSA

Personalised recommendations