Advertisement

Science in China Series A: Mathematics

, Volume 41, Issue 11, pp 1206–1215 | Cite as

λφ4model and Higgs mass in standard model calculated by Gaussian effective potential approach with a new regularization-renormalization method

  • Guangjiong Ni
  • Senyue Lou
  • Wenfa Lu
  • Jifeng Yang
Article

Abstract

Based on a new regularization-renormalization method, the λφ4 model used in standard model (SM) is studied both perturbatively and nonperturbatively by Gaussian effective potential (GEP). The invariant property of two mass scales is stressed and the existence of a (Landau) pole is emphasized. Then after coupling with theSU(2) ×U(1) gauge fields, the Higgs mass in standard model (SM) can be calculated to bem H≈138 GeV. The critical temperature (T c ) for restoration of symmetry of Higgs field, the critical energy scale (μmax, the maximum energy scale under which the lower excitation sector of the GEP is valid) and the maximum energy scale (μmax, at which the symmetry of the Higgs field is restored) in the SM areT c ≈476 GeV, μc≈0.547 × 1015 and μmax≈0.873 × 1015, respectively.

Keywords

λφ4 model Higgs mass regularization renormalization method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, F., etal., Observation of top quark production in p≈p collisions in the collider detector at Fermilab.Phys. Rev. Lett., 1995, 74: 2626.CrossRefGoogle Scholar
  2. 2.
    Abachi, S., etal., Observation of top quark,Phys. Rev. Lett., 1995, 74: 2632.CrossRefGoogle Scholar
  3. 3.
    Renton, P. B., in The17 th International Symposium on LeptonPhoton Interaction, Beijing, China. CERN-PPE/96-63, 13.05.96.Google Scholar
  4. 4.
    Altarelli. G.. Status of precision tests of the standard model. CERN- TH/96-265, hep-ph/9611239.Google Scholar
  5. 5.
    Gillies, J.,Warsaw Conference, CERN COURIER, 1996, 36(7): 1.Google Scholar
  6. 6.
    Callaway, D. J. E., Triviality: Can elementary scalar particle exist?Phys. Rep., 1998, 167: 241.CrossRefGoogle Scholar
  7. 7.
    Sher. M., Electroweak Higgs potentials and vacuum stability,Phys. Rep., 1998. 179: 273.CrossRefGoogle Scholar
  8. 8.
    Ni, G. J., Lou. S. Y., Chen, S. Q., The lower and upper bound on the mass of the Higgs boson in SU(2) gauge theory,Phys. Letts., B, 1998, 200: 161.CrossRefGoogle Scholar
  9. 9.
    Lou. S. Y., Ni, G. J., The Gaussian effective potential method for SU(2) x U(1) gauge theory and the bounds on Higgs mass,Phys. Rev., D, 1989, 3 040.Google Scholar
  10. 10.
    Yang, J. F., Investigation on some problems relevant to the regularization-renormalization effect in quantum field theory, Ph.D. Thesis. Fudan University. 1994.Google Scholar
  11. 11.
    Yang, J. F., Ni. G. J., Chiral anomaly and unambiguous terms of exact scale behavior,Acta Physica Sinica, 1995. 4: 88; Internet. hep-th/9802005.Google Scholar
  12. 12.
    Ni, G. J., Chen. S. Q., Effective potential of λΦ1+31 at zero and finite temperature.Acta Physica Sinica (Overseas version). 1998, 7(6): 401; Internet, hep-th/ 9708155.Google Scholar
  13. 13.
    Ni, G. J., Wang, H.. New regularization-renormalization method in quantum electrodynamics and qualitative calculation on Lamb shift, Preprint, Internet, hep-th/9708457.Google Scholar
  14. 14.
    Ni, G. J., Lou S. Y., Chen. S. Q., The criterion for nontriviality of λΦ4 model and its ultraviolet stable fixed point.,Int. Jour. Mod. Phys., A, 1998, 3: 1 735.Google Scholar
  15. 15.
    Itzykson, C., Zuber, J. B.,Quantum Field Theory. Mew York: McGraw-Hill. 1980. 653.Google Scholar
  16. 16.
    Dolan, L., Jackiw, R., Symmetry behavior at finite temperature,Phys. Rev. D, 1974, 9: 3 320.Google Scholar
  17. 17.
    Alteralli, G., Isodori. G., Lower limit on the Higgs mass in the standard model: An update,Phy. Lett., B, 1994, 9:141.CrossRefGoogle Scholar
  18. 18.
    Eillis, J., Fogli, G. L., Lisi, E., Indications from precision electroweak physics confront theoretical bounds on the mass of the His boson, CERN-TH/96-216, LBNL-39237, hep-ph/9608329.Google Scholar
  19. 19.
    Ibanez-Meier, R., Stevenson, P. M., Autonomous renormalization of the one-loop effective potential and a 2 TeV Higgs in SU(2)XU(1).Phys. Let., B, 1992, 297: 144.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Guangjiong Ni
    • 1
  • Senyue Lou
    • 2
  • Wenfa Lu
    • 3
  • Jifeng Yang
    • 3
  1. 1.Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Institute of Modern PhysicsNingbo UniversityNingboChina
  3. 3.Department of PhysicsFudan UniversityShanghaiChina

Personalised recommendations