Science in China Series A: Mathematics

, Volume 41, Issue 11, pp 1158–1162

A hyper-Kloosterman sum identity

  • Yangbo Ye


From a Davenport-Hasse identity of Gauss sums an identity of a hyper-Kloosterman sum has been deduced. Using this identity the theory of Kloosterman sheaves and equidistribution of hyper-Kloosterman sums can be applied to an exponential sum over a cyclic algebraic number field of prime degree. This identity might also be applied to base change problems in representation theory via a possible relative trace formula over the cyclic number field.


Kloosterman sum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davenport, H., Hasse, H., Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen,J. Reine Angew, Math., 1935, 172: 151.Google Scholar
  2. 2.
    Deligne, P., Les constantes des equations fonctionnelles des fonctions L, inModular Functions of One Variable II,Lect. Notes Math., Vol. 349, Berlin-Heidelberg-New York: Springer-Verlag, 1973, 501–597.Google Scholar
  3. 3.
    Langlands, R. P., On Artin’s L-functions, inComplex Analysis, 1969, Vol. 56, No. 2, Houston: Rice Univ. Press, 1970, 23–28.Google Scholar
  4. 4.
    Jacquet, H., Langlands, R. P.,Automorphic Forms on GL (2),Lect. Notes Math., Vol. 114, Berlin-Heidelberg-New York: Springer-Verlag, 1970.Google Scholar
  5. 5.
    Arthur, J., Clozel, L., Simple algebras, base change, and the advanced theory of the trace Formula, inAnn. Math. Studies, No. 120, Princeton: Princeton Univ. Press, 1989.Google Scholar
  6. 6.
    Ye, Y., The lifting of Kloosterman sums,J. Number Theory, 1995, 51: 275.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ye, Y., The lifting of an exponential sum to a cyclic algebraic number field of a prime degree, to appearinTrans. Ame. Math. Society. Google Scholar
  8. 8.
    Ye, Y., Exponential sums forGL (n) and their applications to base change,Number. Theory, 1998, 68: 112.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ye, Y., Kloosterman integrals and base change forGL (2),J. reine angew. Math., 1989, 400: 57.MATHMathSciNetGoogle Scholar
  10. 10.
    Jacquet, H., Ye, Y., Relative Kloosterman integrals forGL (3),Bulletin de la Société mathématique de France, 1992, 120: 263.MATHMathSciNetGoogle Scholar
  11. 11.
    Ye, Y., The fundamental lemma of a relative trace formula forGL (3),Comp. Math., 1993, 89: 121.MATHGoogle Scholar
  12. 12.
    Friedberg, S., Jacquet, H., The fundamental lemma for the Shalika subgroup ofGL (4),Mem. Amer. Math. Soc., Vol. 124, No. 594, Providence: AMS, 1996, 549.Google Scholar
  13. 13.
    Deligne, P., Applications de la formula des traces aux sommes trigonométriques, inCohomologe Etale (SGA 4 1/2),Lect. Notes Math., Vol. 569, Berlin, Heidelberg New York: Springer-Verlag, 1977, 168–232.Google Scholar
  14. 14.
    Katz, N. M.,Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. Math. Studies, No. 116, Princeton: Princeton Univ. Press, 1988.Google Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Yangbo Ye
    • 1
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations