Science in China Series A: Mathematics

, Volume 41, Issue 11, pp 1151–1157 | Cite as

The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay-differential equations

  • Chengjian Zhang
  • Shuzi Zhou
Article

Abstract

The asymptotic stability of theoretical and numerical solutions for neutral multidelay-differential equations (NMDEs) is dealt with. A sufficient condition on the asymptotic stability of theoretical solutions for NMDEs is obtained. On the basis of this condition, it is proved that A-stability of the multistep Runge-Kutta methods for ODEs is equivalent to NGPk-stability of the induced methods for NMDEs.

Keywords

asymptotic stability multistep Runge-Kutta method NMDEs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwell, V. K., Special stability problem for functional differential equations,BIT, 1975, 15: 130.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bickart, T. A., P-stable and P[α, β]-stable integration/interpolation methods in the solution of retarded differential-difference equations,BIT, 1982, 22: 464.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Liu, M. Z., Spijker, M. N., The stability of the θ-methods in the numerical solution of delay differential equations,IMA J. Numer. Anal., 1990, 10: 31.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    In’t Hout, K. J., Stability analysis of Runge-Kutta methods for systems of delay differential equations,IMA J. Numer. Anal., 1997, 17: 17.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Tian, H. J., Kuang, J. X., The stability of the θ-methods in the numerical solution of delay differential equations with several delay terms,J. Comput. Appl. Math., 1995, 58: 171.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bellen, A., Jackiewicz, Z., Zennaro, M., Stability analysis of one-step methods for neutral delay-differential equations,Numer. Math., 1988, 52: 606.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kuang, J. X., Xiang, J. X., Tian, H. J., The asymptotic stability of one-parameter methods for neutral differential equations,BIT, 1994, 34: 400.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Koto, T., A stability property of A-stable natural Runge-Kutta methods for systems of delay differential equations,BIT, 1994, 34: 262.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hu, G. D., Mitsui, T., Stability analysis of numerical methods for systems of neutral delay-differential equations,BIT, 1995, 35: 504.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hu, G. D., Hu, G. D., Liu, M. Z., Estimation of numerically stable stepsize for neutral DDES via spectral radius,J. Comput. Appl. Math., 1997, 78: 311.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hale, J. K., Verduyn Lunel, S. M.,Introduction tu Functional Differential Equations, New York, Springer-Verlag, 1993.Google Scholar
  12. 12.
    Lancaster, P., Tismenetsky, M.,The Theory of Matrices, Orlando: Academic Press, 1985.MATHGoogle Scholar
  13. 13.
    Li, S. F., B-Convergence properties of multistep Runge-Kutta methods,Math. Comput., 1994, 62: 565.MATHCrossRefGoogle Scholar
  14. 14.
    Horn, R. A., Johnson, C. R.,Topics in Matrix Analysis, Cambridge: Cambridge University Press, 1991.MATHGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Chengjian Zhang
    • 1
  • Shuzi Zhou
    • 2
  1. 1.Department of MathematicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Applied MathematicsHunan UniversityChangshaChina

Personalised recommendations