American Journal of Potato Research

, Volume 82, Issue 4, pp 321–328 | Cite as

Environmental impacts of potato nutrient management

  • Joan R. Davenport
  • Paul H. Milburn
  • Carl J. Rosen
  • Robert E. Thornton
Symposium Presentation Of The Potato Association Of America Production And Management Section


Use of soluble chemical fertilizers for crop production, particularly to supply nitrogen, phosphorus, and potassium, has increased potato yields and quality for several decades. Over the past 10 years, however, there has been an increased concern over the environmental impact of agricultural fertilizers, particularly as nonpoint sources of water pollution. Currently, nitrogen is a target for improved use efficiencies in potato to reduce potential nitrate contamination of groundwater. Phosphorus management is increasingly being examined as a potential non-point source contaminant of surface waters. Potato researchers throughout North America are conducting studies that focus on maintaining or enhancing crop production while reducing the potential of negative environmental impacts. Precision agriculture, cover crops, slow-release fertilizers, and genetic manipulation are key strategies being studied. Concurrently, new challenges are arising, such as concerns over phosphorus leaching and heavy metal contamination in fertilizers. These have the potential to restrict nutrient use in agricultural systems, requiring both potato producers and scientists to seek additional alternatives to improve nutrient-use efficiency.

Additional key words

fertilizers nitrogen phosphorus heavy metals precision agriculture non-point source contamination genetic manipulation cover crops 


El manejo de nutrientes puede disminuir la severidad de muchas enfermedades importantes de papa y ciertas prácticas, tal como el mantener un pH bajo para el control de la sarna, se ha seguido con este simple objetivo. Con frecuencia, los productores de papa han incorporado modificaciones de la fertilidad con respecto a ciertas enfermedades en particular y condiciones de cultivo. Desgraciadamente, la reducción de la enfermedad puede ser consistente con una fertilización óptima para rendimiento, calidad y rentabilidad. Lo que puede controlar una enfermedad puede no ser bueno para otra enfermedad y los mecanismos involucrados son a menudo complejos e insuficientemente comprendidos. Los productores de papa continuarán experimentando limitaciones conflictivas en la producción. Estas limitaciones incluyen la influencia del precio de los artículos para mejorar el rendimiento y la reducción de los gastos; influencia de las demandas del consumidor para el mejoramiento de la calidad; cambios de variedad debido a las consideraciones anteriores más que a la reducción por enfermedades; incremento en la presión para la justificación; cambios y reducción en el uso de pesticidas; preocupación continua acerca del movimiento del nitrógeno y fósforo en el agua del suelo y su pérdida y un aumento de atención en la rotación de cultivos. En el lado positivo, las estrategias en el manejo de nutrientes entes para situaciones altamente específicas continúan mejorando y las prácticas referentes a los nutrientes y la variabilidad de las enfermedades dentro del campo se están volviendo más sofisticadas. En este contexto, existen oportunidades para el manejo de practicas culturales que reducen la presión de la enfermedad y la confianza en el control químico. Para estar efectivamente integrado a tales sistemas especializados de manejo, el mecanismo de estas medidas de control y las condiciones bajo las cuales son practica, necesitarán ser mejor comprendidas. Asimismo, las respuestas de estas tácticas necesitan ser mejor cuantificadas para permitir un adecuado análisis costo-beneficio. Con referencia a los efectos de los pesticidas agrícolas en la seguridad alimentaria, los trabajadores y el medio ambiente, el manejo de los nutrientes disponibles para la planta pueden convertirse en una manera de enfocar la practica para la supresión de enfermedades en el futuro.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anonymous. 1997. The 1997 facts and figures for the chemical industry at a glance. 1. Production. Chem Eng News 75(25):45.Google Scholar
  2. Bertilsson G, and C Forsberg. 1997. Sustainable P management in agriculture.In: Phosphorus Loss From Soil to Water. CAB International, New York, pp 273–283.Google Scholar
  3. Davenport JR, and C DeMoranville. 2004. Temperature influences nitrogen release rates in cranberry soils. HortScience 39(1): 80–83.Google Scholar
  4. Davenport JR, MJ Hattendorf, S Han, RG Evans, and SM Schneider. 1998. Phosphorus fertilizer management strategies for variable rate fertilizer applications in center pivot irrigated potato rotations. Proceedings of the 4th International Conference on Precision Agriculture in Minneapolis-St. Paul 19–22 July 1998: In Review.Google Scholar
  5. Errebhi M, CJ Rosen, SC Gupta, and DE Birong. 1998a. Potato yield response and nitrate leaching as influenced by nitrogen management. Agron J 90:10–15.Google Scholar
  6. Errebhi M, CJ Rosen, FI Lauer, MW Martin, JB Bamberg, and DE Birong. 1998b. Screening of exotic potato germplasm for nitrogen uptake and biomass production. Amer J Potato Res 75: 93–100.CrossRefGoogle Scholar
  7. Errebhi M, GJ Rosen, FI Lauer, NW Martin, and JB Bamberg. 1999. Evaluation of tuber-bearingSolanum species for nitrogen use efficiency and biomass partitioning. Amer J Potato Res 76:143–151.Google Scholar
  8. Evans RG, S Han, SM Schneider, and MW Kroeger. 1996. Precision center pivot irrigation for efficient use of water and nitrogen.In: PC Robert, RH Rust, and WE Larson (eds), Proc. 3rd International Conf. on Prec. Ag., Minneapolis, MN, 23–26 June 1996. ASA, CSSA, SSSA, Madison, WI. pp 75–84.Google Scholar
  9. Feibert EBG, CC Shock, and LD Saunders. 1998. Nitrogen fertilizer requirements of potatoes using carefully scheduled sprinkler irrigation. HortScience 33:262–265.Google Scholar
  10. Felsot A. 1998. Re-examining the link between nitrates and “blue-baby” syndrome: A necessary first step for managing ground water quality to protect public health. Agrichem Environ News 150:11–14.Google Scholar
  11. Harre EA, and WC White. 1985. Fertilizer market profile.In: OP Englestad (ed), Fertilizer Use and Technology. Soil Sci Soc Am, Madison, WI. pp 1–24.Google Scholar
  12. Hanlon EA, DL Anderson, and OA Diaz. 1997. Nitrogen mineralization in Histosols of the Everglades Agricultural Area. Commun Soil Sci Plant Anal 28:73–87.Google Scholar
  13. Hill AR. 1986. Nitrate and chloride distribution and balance under continuous potato cropping. Agric Ecosyst Environ 15:267–280.CrossRefGoogle Scholar
  14. King BA, IR McCann, JC Stark, and DT Westermann. 1996. Spatially varied nitrogen application through a center pivot irrigation system.In: PC Robert, RH Rust, and WE Larson (eds), Proc. 3rd International Conf. on Prec. Ag., Minneapolis, MN, 23–26 June 1996. ASA, CSSA, SSSA, Madison, WI. pp 85–94.Google Scholar
  15. Kleinkopf GE, DT Westermann, and RB Dwelle. 1981. Dry matter production and nitrogen utilization by six potato cultivars. Agron J 73:799–802.Google Scholar
  16. Lemunyon J, and TC Daniel. 1998. Phosphorus management for water quality protection: A national effort.In: JT Sims (ed), Soil Testing for Phosphorus: Environmental Uses and Implications. S Coop Ext Series Bull No 389. pp 1–4.Google Scholar
  17. McLaughlin MJ, NA Mair, GE Rayment, LA Sparrow, G Berg, A McKay, P Milham, RH Merry, and MK Smart. 1997. Cadmium in Australian potato tubers and soils. J Environ Qual 26:1644–1649.CrossRefGoogle Scholar
  18. Meisinger JJ. 1976. The Climatic Water Budget in Environmental Analysis. Lexington Books, Lexington, MA.Google Scholar
  19. Milburn P, JA MacLeod, and B Sanderson. 1997. Control of fall nitrate leaching from early harvested potatoes on Prince Edward Island. Can Ag Eng 39:263–271.Google Scholar
  20. Milburn P, JE Richards, C Gartley, T Pollock, H O’Neill, and H Bailey. 1990. Nitrate leaching from systematically tiled potato fields in New Brunswick, Canada. J Envir Qual 19:448–454.Google Scholar
  21. Nolan BT, BC Ruddy, KJ Hitt, and DR Helsel. 1998. A national look at nitrate contamination of ground water. Water Condit Purif 39 (12): 76–79.Google Scholar
  22. Pan W, J Brunty, M Moneymaker, R Bolton, R Stevens, R Boydston, G Santo, R Thornton, and S Victory. 1997. Nitrogen recycling in potato rotations. Proceedings of the 1992 Washington State Potato Conference. pp 33–39.Google Scholar
  23. PPI. 1998. Heavy metals in soils and phosphate fertilizers. PPI/PPIC/FAR Tech. Bull. 1998-2.Google Scholar
  24. Roberts S, HH Cheng, and IW Butler. 1992. Recovery of starter nitrogen-15 fertilizer with supplementarily applied ammonium nitrate on irrigated potato. Am Potato J 69:309–314.CrossRefGoogle Scholar
  25. Romkens MJM, DW Nelson, and JV Mannering. 1973. Nitrogen and phosphorus composition of surface runoff as affected by tillage method. J Environ Qual 2:292–295.Google Scholar
  26. Rosen CJ, and D Birong. 1997. Evaluation of Meister controlled release fertilizer for irrigated potato production—1996. Misc Publ 91–1997. Minn Agric Expt Sta, Univ of Minn, Soils Series #143:23–29.Google Scholar
  27. Rosen CJ, D Birong, and F Zvomuya. 1998. Evaluation of Meister controlled release fertilizer for irrigated potato production—1997. Misc Publ 95-1998. Minn Agric Expt Sta, Univ of Minn, Soils Series #144:18–23.Google Scholar
  28. Saffinga PG, DR Keeney, and CB Tanner. 1977. Nitrogen, chloride, and water balance with irrigated Russet Burbank potatoes in sandy soil. Agron J 69:251–257.Google Scholar
  29. Sanderson JB, and JA MacLeod. 1993. Soil nitrate profile and resonse of potates to fertilizer N in relation to time of incorporation of lupin (Lupinus albus). Can J Soil Sci 74:241–246.Google Scholar
  30. Sattelmacher S, R Kuene, P Malagamba and U Moreno. 1990. Evaluation of tuber bearingSolanum species belonging to different ploidy levels for its yielding potential at low soil fertility. Plant Soil 129:227–233.Google Scholar
  31. Sharpley AN, TC Daniel, JT Sims, and DH Pote. 1996. Determining environmentally sound phosphorus levels. J Soil Water Cons 51:160–166.Google Scholar
  32. Sharpley AN, T Daniel, T Sims, J Lemunyon, R Stevens, and R Parry. 2003. Agricultural Phosphorus and Eutrophication, 2nd ed. USDA, ARS-149.Google Scholar
  33. Stumm W, and JJ Morgan. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. J. Wiley and Sons, NewYork.Google Scholar
  34. Trenkel ME. 1997. Controlled release and stabilized fertilizers in agriculture. International Fertilizer Industry Association, Paris.Google Scholar
  35. Weinert TL, WL Pan, MR Moneymaker, GS Santo, and RG Stevens. 2002. Nitrogen cycling by non-leguminous cover crops to reduce leaching potential in potato rotations. Agron J 94:365–372.Google Scholar
  36. Westermann DT. 2005. Nutritional requirements of potatoes. Am J Potato Res (this issue).Google Scholar
  37. Whitley KM, and JR Davenport. 2003. Nitrate leaching potential under variable and uniform nitrogen fertilizer management in irrigated potato systems. HortTechnology 13(4): 605–609.Google Scholar
  38. Wilson D. 2001. Fateful Harvest. Harper Publishers, New York.Google Scholar
  39. Wood CW. 1998. Agricultural phosphorus and water quality: An overview.In: JT Sims (ed), Soil Testing for Phosphorus: Environmental Uses and Implications. S Coop Ext Series Bull No 389. pp. 5–12.Google Scholar
  40. Zebarth BJ, G Tai, R Tarn, H de Jong, and PH Milburn. 2004. Nitrogen use efficiency characteristics of commercial potato cultivars. Can J Plant Sci 84:589–598.Google Scholar
  41. Zvomuya F, CJ Rosen, and DE Birong. 2001. Evaluation of polyolefin coated urea for irrigated potato production on sandy soil. HortScience 36:1057–1060.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Joan R. Davenport
    • 1
  • Paul H. Milburn
    • 2
  • Carl J. Rosen
    • 3
  • Robert E. Thornton
    • 4
  1. 1.Washington State University - ProsserProsserUSA
  2. 2.Potato Research CentreAgriculture and Agri-Food CanadaFrederictonCanada
  3. 3.1991 Upper Buford CircleUniversity of MinnesotaSt. PaulUSA
  4. 4.Department of Horticulture & Landscape ArchitectureWashington State UniversityPullmanUSA

Personalised recommendations