Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 52, Issue 1, pp 141–144 | Cite as

C*-algebras which are Grothendieck spaces

  • Kazuyuki Saitô
  • J. D. Maitland Wright
Article

Abstract

Each monotoneσ-completeC*-algebra is a Grothendieck space.

Keywords

Hilbert Space Unit Ball Weak Convergence Operator Algebra Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brooks J. K., Saitô K., Wright J. D. M.,Operator algebras and a theorem of Dieudonné, Rend. Circolo Mat. Palermo, (in press).Google Scholar
  2. [2]
    Dunford N., Schwartz J. T.,Linear operators, vol. 1, Interscience, New York, 1958.Google Scholar
  3. [3]
    Grothendieck A.,Sur les applications linéaires faiblement compactes d’espaces du type C(K), Canadian J. Math.,5 (1953), 129–173.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Kadison R. V., Ringrose J. R.,Fundamentals of the theory of operator algebras vol.I and vol.II, Academic Press, London-Orlando, 1983 and 1986.Google Scholar
  5. [5]
    Pedersen G. K.,C*-algebras and their automorphism groups, Academic Press, London-New York 1979.zbMATHGoogle Scholar
  6. [6]
    Pfitzner H.,Weak compactness in the dual of a C*-algebra is determined commutatively, Math. Ann.,298 (1994), 349–371.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Schaefer H. H.,Banach lattices and positive operators, Springer, Berlin-Heidelberg-New York, 1974.zbMATHGoogle Scholar
  8. [8]
    Schaefer H. H.,Weak convergence of measures, Math. Anal.,193 (1971), 57–64.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Seever G. L.,Measures on F-spaces, Trans. Amer. Math. Soc.,133 (1968), 267–280.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Semadeni Z.,On weak convergence of measures and σ-complete Boolean algebras, Colloq. Math.,12 (1964), 229–233.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Takesaki M.,Theory of Operator Algebras I, Springer, Berlin-Heidelberg-New York, 1979.zbMATHGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Kazuyuki Saitô
    • 1
  • J. D. Maitland Wright
    • 2
  1. 1.Mathematical InstituteTôhoku UniversitySendaiJapan
  2. 2.Mathematics DepartmentUniversity of ReadingReadingEngland

Personalised recommendations