Advertisement

Physiological regulation of potato tuber dormancy

  • Jeffrey C. Suttle
Article

Abstract

At harvest, potato (Solanum tuberosum L.) tubers are dormant and will not sprout. As the period of postharvest storage is extended, tuber dormancy is broken and sprout growth commences. The loss of tuber dormancy and onset of sprout growth is accompanied by numerous biochemical changes, many of which are detrimental to the nutritional and processing qualities of potatoes. Endogenous hormones have been proposed to play a significant role in tuber dormancy regulation. The involvement of all major classes of endogenous hormones in tuber dormancy is reviewed. Based on available evidence, it is concluded that both ABA and ethylene are required for dormancy induction, but only ABA is needed to maintain bud dormancy. An increase in cytokinin sensitivity and content appear to be the principal factors leading to the loss of dormancy. Changes in endogenous IAA and GA content appear to be more closely related to the regulation of subsequent sprout growth.

Additional Key Words

hormones postharvest Solanum tuberosum sprouting storage 

Abbreviations

ABA

abscisic acid

BS

brassinosteroid

GA

gibberellin

IAA

indole-3-acetic acid

NAA

1-naphthalene acetic acid

Resumen

Los tubérculos de papa (Solanum tuberosum L.), al momento de la cosecha se encuentran en estado latente y no tienen capacidad de germinación. A medida que transcurre el periodo de almacenamiento, se rompe la latencia y comienza el crecimiento del brote. La supresión de la latencia del tubérculo y el inicio del crecimiento del brote son acompañados por numerosos cambios bioquímicos, muchos de los cuales son perjudiciales para la calidad nutricional y el procesamiento de la papa. Se señala que las hormonas endégenas juegan un rol significativo en la regulación de la latencia. Se hace una revisión sobre la forma en que intervienen las principales clases de hormonas endógenas en la latencia del tubérculo. En base a la evidencia disponible se concluye que tanto el ABA como el etileno son requeridos para la inducción de la latencia, pero sólo el ABA es necesario para mantener la latencia de la yema. Un incremento en la sensibilidad a la citoquinina y su contenido, parecen ser los factores principales que conducen a la pérdida de la latencia. Los cambios en el contenido de IAA y AG parece que están mas estrechamente relacionados a la regulación del crecimiento ulterior del brote.

Literature Cited

  1. Abdala G, G Castro, O Miersch, and D Pearce. 2000. Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum). Plant Growth Regul 36:121–126.CrossRefGoogle Scholar
  2. Alam SMM, DP Murr, and L Kristof. 1994. The effect of ethylene and of inhibitors of protein and nucleic acid syntheses on dormancy break and subsequent sprout growth. Potato Res 37:25–33.CrossRefGoogle Scholar
  3. Allen EJ, PJ O’Brien, and D Firman. 1992. Seed tuber production and management.In: P Harris (ed), The Potato Crop. Chapman and Hall, London. pp 247–291.Google Scholar
  4. Bachern C, R Van der Hoeven, J Lucker, R Oomen, E Casarini, E Jacobsen, and R Visser. 2000. Functional genomic analysis of potato tuber life-cycle. Potato Res 43:297–312.CrossRefGoogle Scholar
  5. Banas A, M Bielińska-Czarnecka, and J Klocek. 1984. Activity of endogenous cytokinins in potato tubers during dormancy and sprouting. Bull Pol Acad Sci, Biol Sci 23:213–218.Google Scholar
  6. Bialek K, and M Bielińska-Czarnecka. 1975. Gibberellin-like substances in potato tubers during their growth and dormancy. Bull Acad Pol Sci, Ser Sci Biol 23:213–218.Google Scholar
  7. Blumenthal-Goldschmidt S, and L Rappaport. 1965. Regulation of bud rest in tubers of potato,Solanum tuberosum L. II Inhibition of sprouting by inhibitor β complex and reversal by gibberellin A3. Plant Cell Physiol 6:601–608.Google Scholar
  8. Boo L. 1962. Gibberellin-like substances in the potato tuber during and after the rest period. Sven Bot Tidskr 56:193–196.Google Scholar
  9. Brian PW, HG Hemming, and M Radley. 1955. A physiological comparison of gibberellic acid with some auxins. Physiol Plant 8:899–912.CrossRefGoogle Scholar
  10. Burton WG. 1989. The Potato, 3rd Ed. Longman Scientific and Technical, Essex. pp 470–504.Google Scholar
  11. Burton WB, and DF Meigh. 1971. The production of growth-suppressing volatile substances by stored potato tubers. Potato Res 14:96–101.CrossRefGoogle Scholar
  12. Campbell MA, JC Suttle, and TW Sell. 1996. Changes in cell cycle status and expression of p34cdc2 kinase during potato tuber meristem dormancy. Physiol Plant 98:743–752.CrossRefGoogle Scholar
  13. Carrera E, JL Garcia-Martinez, and S Prat. 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber-induction and tuber yield of potato plants. Plant J 22:247–256.PubMedCrossRefGoogle Scholar
  14. Clouse SD, and JM Sasse. 1998. Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451.PubMedCrossRefGoogle Scholar
  15. Coleman WK. 1987. Dormancy release in potato tubers: a review. Potato Res 14:96–101.Google Scholar
  16. Coleman WK, and RR King. 1984. Changes in endogenous abscisic acid, soluble sugars and proline levels during tuber dormancy inSolanum tuberosum L. Amer Potato J 61:437–449.CrossRefGoogle Scholar
  17. Creech DL, M Workman, and MD Harrison. 1973. Influence of storage factors on endogenous ethylene production by potato tubers. Amer Potato J 64:145–150.CrossRefGoogle Scholar
  18. Cvikrová M, LS Sukhova, J Eder, and NP Korableva. 1994. Possible involvement of abscisic acid, ethylene and phenolic acids in potato tuber dormancy. Plant Physiol Biochem 32: 685–691.Google Scholar
  19. de Bruxelles GL, and MR Roberts. 2001. Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20:487–521.CrossRefGoogle Scholar
  20. den Boer BG, and JAH Murray. 2000. Triggering the cell cycle in plants. Trends Cell Biol 10:245–250.CrossRefGoogle Scholar
  21. Denny FE. 1926. Hastening the sprouting of dormant potato tubers. AmerJ Bot 13:118–125.CrossRefGoogle Scholar
  22. Denny FE. 1945. Further tests of the use of the methylester of alphanaphthalene acetic acid for inhibiting the sprouting of potato tubers. Contr Boyce Thompson Inst 14:15–20.Google Scholar
  23. El-Antably, PF Wareing, and J Hillman. 1967. Some physiological responses to D, L-abscisin (dormin). Planta 73:74–90.CrossRefGoogle Scholar
  24. Engelbrecht L, and M Bielinska-Czarnecka. 1972. Increase of cytokinin activity in potato tubers near the end of dormancy. Biochem Physiol Pflanzen 163:499–504.Google Scholar
  25. Ewing EE. 1995. The role of hormones in potato (Solanum tuberosum L.) tuberization. In: PJ Davies (ed), Plant Hormones. Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publ, Dordrecht. pp 698–724.Google Scholar
  26. Francis D, and DA Sorrell. 2001. The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12.CrossRefGoogle Scholar
  27. Franklin J, and T Hemberg. 1980. Seasonal changes in the different components of the inhibitor β complex in potato tubers. Physiol Plant 50:227–232.CrossRefGoogle Scholar
  28. Freeman D, C Riou-Khamlichi, EA Oakenfull, and JAH Murray. 2003. Isolation, characterization and expression of cyclin and cyclindependent kinase genes in Jerusalem artichoke (Helianthus tuberosus L.). J Exp Bot 54:303–308.PubMedCrossRefGoogle Scholar
  29. Guthrie, JD. 1940. Control of bud growth and initiation of roots at the cut surface of potato tubers with growth-regulating substances. Contr Boyce Thompson Inst 11:29–53.Google Scholar
  30. Heddon P, and Y Kamiya. 1997. Gibberellin biosynthesis: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460.CrossRefGoogle Scholar
  31. Hemberg T. 1942. Änderungen des auxingehalts in kartoffelknollen vor und nach dem keimen. Sven Bot Tidskr 36:467–470.Google Scholar
  32. Hemberg T. 1949. Significance of growth-inhibiting substances and auxins for the rest-period of the potato tuber. Physiol Plant 2:24–36.CrossRefGoogle Scholar
  33. Hemberg T. 1952. The significance of the acid growth-inhibiting substances for the rest-period of the potato tuber. Physiol Plant 5:115–129.CrossRefGoogle Scholar
  34. Hemberg T. 1970. The action of some cytokinins on the rest-period and the content of acid growth-inhibiting substances in potato. Physiol Plant 23:850–858.CrossRefGoogle Scholar
  35. Hemberg T. 1985. Potato rest.In: PH Li (ed), Potato Physiology. Academic Press, New York. pp 353–388.Google Scholar
  36. Holst UB. 1971. Some properties of inhibitor β fromSolanum tuberosum compared to abscisic acid. Physiol Plant 24:392–396.CrossRefGoogle Scholar
  37. Jones MG, R Horgan, and MA Hall. 1988. Endogenous gibberellins in the potato (Solanum tuberosum). Phytochemistry 27:7–10.CrossRefGoogle Scholar
  38. Koda Y. 1982. Effects of storage temperature and wounding on cytokinin levels in potato tubers. Plant Cell Physiol 23:851–857.Google Scholar
  39. Korableva NP, TA Platonova, MZ Dogonadze, and AS Evsunina. 2002. Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biol Plant 45: 39–43.CrossRefGoogle Scholar
  40. Lewis MD, GE Kleinkopf, and KK Shetty. 1997. Dimethylnaphthalene and diisopropylnaphthalene for potato sprout control in storage: 1. Application methodology and efficacy. Amer Potato J 74:183–197.CrossRefGoogle Scholar
  41. Macdonald MM, and DJ Osborne. 1988. Synthesis of nucleic acids and protein in tuber buds ofSolanum tuberosum during dormancy and early sprouting. Physiol Plant 73:392–400.CrossRefGoogle Scholar
  42. Mauk CS, and AR Langille. 1978. Physiology of tuberization inSolanum tuberosum L. Plant Physiol 62:438–442.PubMedCrossRefGoogle Scholar
  43. Meigh DF, A Authur, E Filmer, and R Self. 1973. Growth-inhibiting volatile aromatic compounds produced bySolanum tuberosum tubers. Phytochemistry 12:987–993.CrossRefGoogle Scholar
  44. Milborrow BV. 1967. The identification of (+) abscisin II ((+) dormin) in plants and measurement of its concentrations. Planta 76:93–113.CrossRefGoogle Scholar
  45. Okazawa Y. 1974. A relation between ethylene evolution and sprouting of potato tuber. J Facul Agricul Hokkaido Univ 57:443–454.Google Scholar
  46. Okubo H. 2000. Growth cycle and dormancy in plants.In: JD Viémont, and J Crabbé (eds), Dormancy in Plants: From Whole Plant Behaviour to Cellular Control. CABI Press, Wallingford. pp 1–22.Google Scholar
  47. Ooms G, and JR Lenton. 1985. T-DNA genes to study plant development: precocious tuberisation and enhanced cytokinins inA. tumefaciens transformed potato. Plant Mol Biol 5:205–212.CrossRefGoogle Scholar
  48. Poapst PA, AB Durkee, WA McGugan, and FB Johnston. 1968. Identification of ethylene in gibberellic-acid-treated potatoes. J Sci Food Agric 19:325–327.CrossRefGoogle Scholar
  49. Prange RK, W Kalt, BJ Daniels-Lake, CL Liew, and RT Page. 1998. Using ethylene as a sprout control agent in stored Russet Burbank potatoes. J Amer Soc Hort Sci 123:463–469.Google Scholar
  50. Prange RK., W Kalt, BJ Daniels-Lake, CL Iiew, J Walsh, P Dean, R Coffin, and RT Page. 1997. Alternatives to currently used potato sprout suppressants. Postharvest News & Info 8:37 N41 N.Google Scholar
  51. Rappaport L, H Timm, and LF Lippert. 1958. Gibberellin on white potatoes applied to freshly harvested, resting potato tubers, or used in preharvest foliar sprays, gibberellin promotes sprouting. Calif Agric 12:4–5.Google Scholar
  52. Ronning CM, SS Stegalkina, RA Ascenzi, O Bougri, AL Hart, TR Utterbach, SE Vanaken, SB Riedmuller, JA White, J Cho, GM Pertea, Y Lee, S Karamycheva, R Sultana, J Tsai, J Quakenbush, HM Giffiths, S Retrepo, CD Smart, WE Fry, R van der Hoeven, S Tanksley, P Zhang, H Jin, ML Yamamoto, BJ Baker, and CR Buell. 2003. Comparative analyses of potato expressed sequence tag libraries. Plant Physiol 131:419–429.PubMedCrossRefGoogle Scholar
  53. Rosa JT. 1925. Shortening the rest period of potatoes with ethylene gas. Potato Assoc Amer, Potato News Bull 2:363–365.Google Scholar
  54. Rylski I, L Rappaport, and HK Pratt. 1974. Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiol 53:658–662.PubMedGoogle Scholar
  55. Smith OE, and L Rappaport. 1961. Endogenous gibberellins in resting and sprouting potato tubers. Adv Chem Ser 28:42–48.Google Scholar
  56. Sorce C, R Lorenzi, N Ceccarelli, and P Ranalli. 2000. Changes in free and conjugated IAA during dormancy and sprouting of potato tubers. Aust J Plant Physiol 27:371–377.CrossRefGoogle Scholar
  57. Sorce C, A Piaggesi, N Ceccarelli, and R Lorenzi. 1996. Role and metabolism of abscisic acid in potato tuber dormancy and sprouting. J Plant Physiol 149:548–552.Google Scholar
  58. Sukhova LS, I Machackova, J Eder, ND Bibik, and NP Korableva. 1993. Changes in the levels of free IAA and cytokinins in potato tubers during dormancy and sprouting. Biol Plant 35:387–391.Google Scholar
  59. Suttle JC. 1995. Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubers. Physiol Plant 95:233–240.CrossRefGoogle Scholar
  60. Suttle JC. 1998a. Involvement of ethylene in potato microtuber dormancy. Plant Physiol 118:843–848.PubMedCrossRefGoogle Scholar
  61. Suttle JC. 1998b. Postharvest changes in endogenous cytokinins and cytokinin efficacy in potato tubers in relation to bud endodormancy. Physiol Plant 103:59–69.CrossRefGoogle Scholar
  62. Suttle JC. 2002. Dormancy-related changes in cytokinin efficacy and metabolism in potato tubers during postharvest storage. Plant Growth Regul 35:199–206.CrossRefGoogle Scholar
  63. Suttle JC. 2003. Auxin-induced sprout growth inhibition: role of endogenous ethylene. Amer J Potato Res 80:303–309.Google Scholar
  64. Suttle JC. 2004. Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical evaluation. J Plant Physiol 161:157–164.PubMedCrossRefGoogle Scholar
  65. Suttle JC, and GM Banowetz. 2000. Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol Plant 109:68–74.CrossRefGoogle Scholar
  66. Suttle JC, and JF Hultstrand. 1994. Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol 105:891–896.PubMedGoogle Scholar
  67. Turnbull CGN, and DE Hanke. 1985a. The control of bud dormancy in potato tubers. Evidence for the primary role of cytokinins and a seasonal pattern of changing sensitivity to cytokinin. Planta 165:359–365.CrossRefGoogle Scholar
  68. Turnbull CGN, and DE Hanke. 1985b. The control of bud dormancy in potato tubers. Measurement of the seasonal pattern of changing concentrations of zeatin-cytokinms. Planta 165:366–376.CrossRefGoogle Scholar
  69. USDA-NASS. 2002. Agricultural statistics 2001.Google Scholar
  70. Van den Berg JH, EE Ewing, RL Plaisted, S McMurray, and MW Bonierbale. 1996. QTL analysis of potato tuber dormancy. Theor Appl Genet 93:317–324.CrossRefGoogle Scholar
  71. Vanden Berg JH, I Simko, PJ Davies, EE Ewing, and A Halinska. 1995. Morphology and [14C]gibberellin A12 metabolism in wild-type and dwarfSolanum tuberosum ssp.andigena grown under long and short photoperiods. J Plant Physiol 146:467–473.Google Scholar
  72. Van Staden J, and NAC Brown. 1979. Investigation into the possibility that potato buds synthesize cytokinins. J Exp Bot 30:391–397.CrossRefGoogle Scholar
  73. Went FW, and KV Thimann. 1937. Phytohormones. The Macmillan Co, New York.Google Scholar
  74. Yoshihara T, A Orner, H Koshino, S Sakamura, Y Kikuta, and Y Koda 1989. Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L). Agric Biol Chem 53:2835–2837.Google Scholar
  75. Zeevaart JAD. 1976. Physiology of flower formation. Annu Rev Plant Physiol 27:321–348.CrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Northern Crop Science LaboratoryUSDA-ARSFargo

Personalised recommendations