Rendiconti del Circolo Matematico di Palermo

, Volume 51, Issue 2, pp 237–248

On bianchi identities

  • Ph. Delanoe
Article

2000 Mathematics Subject Classification

Primary 53B05 Secondary 53A45 

Résumé

Après un bref bilan concernant preuves et applications des identités de Bianchi, nous complétons l’approche récentevia la naturalité, due à Kazdan, en l’étendant des connexions riemanniennes aux connexions linéaires; puis nous proposons pour ces connexions une nouvelle approche basée seulement sur l’identitéd2=0 appliquée aux 1-formes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. L. Besse,Einstein Manifolds, Springer-Verlag, Ergebnisse der Mathematik und ihrer Grenzgebiete3. Folge, Bd. 10, Berlin Heidelberg (1987).Google Scholar
  2. [2]
    L. Bianchi,Sui simboli a quattro indici e sulla curvatura di Riemann, Rend. Acc. Naz. Lincei, (5)11 (1902), 3–7.Google Scholar
  3. [3]
    J.-P. Bourguignon,Transport parallèle et connexions en géométrie et en physique, in “1830–1930:a century of geometry”, Springer-Verlag, Lect. Notes in Physics402 Berlin Heidelberg (1992), 150–164.Google Scholar
  4. [4]
    E. Cartan,Sur les variétés à connexion on affine et la théorie de la relativité généralisée, Ann. Ec. Norm.,40 (1923) 325–412.MathSciNetGoogle Scholar
  5. [5]
    E. B. Christoffel,Über die Transformation der homogenen Differentialausdrücke zweiten Grades, J. reine angew. Math.,70 (1869), 46–70.Google Scholar
  6. [6]
    D. DeTurck,Metrics with prescribed Ricci curvature, in Seminar on Differential Geometry, Ed. S.-T. Yau, Annals of Math. Studies,102, Princeton Univ. Press (1982), 525–537.MathSciNetGoogle Scholar
  7. [7]
    D. DeTurck,Existence of metrics with prescribed Ricci curvature: local theory, Inventiones Math.,65 (1981), 179–201.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. B. A. Epstein,Natural tensors on riemannian manifolds, J. Diff. Geom.,10 (1975), 631–645.MATHGoogle Scholar
  9. [9]
    D. Hilbert,Die Grundlagen der Physik, Math. Annalen,92 (1924), 1–32.CrossRefMathSciNetGoogle Scholar
  10. [10]
    J. L. Kazdan,Another proof of Bianchi’s identity in riemannian geometry, Proceedings A.M.S.,81 (1981), 341–342.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    S. Kobayashi & K. Nomizu,Foundations of differential geometry, vol. I, Interscience Publishers, John Wiley & Sons, New-York London (1963).Google Scholar
  12. [12]
    S. Lang,Introduction to differentiable manifolds, John Wiley & Sons, Inc., New-York (1962).MATHGoogle Scholar
  13. [13]
    G. Ricci & T. Levi-Civita,Méthodes de calcul différentiel absolu et leurs applications, Math. Annalen,54 (1900), 125–201.CrossRefMathSciNetGoogle Scholar
  14. [14]
    F. Schur,Über den Zusammenhang der Räume Konstanten Riemann’schen Krümmungsmasses mit den projektiven Räumen, Math. Annalen,27 (1886), 537–567.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Michael Spivak,A comprehensive introduction to differential geometry, vol. II (second edition), Publish or Perish, Inc., Berkeley (1979).MATHGoogle Scholar
  16. [16]
    C. L. Terng,Natural vector bundles and natural differential operators, Amer. J. Math.,100 (1978), 775–828.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    K. Yano,The theory of Lie derivatives and its applications, North Holland, Biblioth. Math. vol. III, Amsterdam (1955).Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Ph. Delanoe
    • 1
  1. 1.Université de Nice-Sophia Antipolis Mathématiques, Parc ValroseNICE CEDEX 2

Personalised recommendations