Miscible Fluids in Microgravity (MFMG): A zero-upmass investigation on the International Space Station

  • John A. Pojman
  • Nick Bessonov
  • Vitaly Volpert
  • Mark S. Paley
Article

Abstract

Miscible Fluids in Microgravity (MFMG) was a zero-upmass investigation performed on the International Space Station. The goal of MFMG was to determine if interfacial phenomena seen with immiscible fluids could be seen with miscible fluids. The experiments had to be performed with existing materials on the ISS. Honey and water were chosen as the fluids, and urine collection syringes were used as the vessels in which the experiments were performed. In March 2004 (Increment 8) Dr. Michael Foale performed four experiments under isothermal conditions to determine: If a stream of honey injected into water would exhibit the Rayleigh-Tomotika instability and break into small drops. If an aspherical drop of water in honey would spontaneously assume a spherical shape. The experiments were performed successfully. During Increment 9, Mike Fincke performed two runs in which a stream of honey was injected into water while the syringe was attached to the surface of the Commercial Generic Bioprocessing Apparatus (CGBA) at approximately 31° C. No change in the stream shape was observed. Two more runs were performed on Increments 10 and 11 but no additional phenomena were observed. No behavior beyond simple diffusion was observed. We performed simulations with the Navier-Stokes equations plus a Korteweg stress term. We estimated that the maximum possible value of the square gradient parameter was 10−12 N for the honey-water system.

References

  1. 1.
    van der Waals, J. D.: The Thermodynamic Theory of Capillarity under the Hypothesis of a Continuous Variation in Density (translated by J. Rowlinson). J. Stat. Phys. vol. 20, p. 197 (1979)CrossRefGoogle Scholar
  2. 2.
    Korteweg, D. J.: Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais coninues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Archives Néerlandaises des Sciences Exactes et Naturelles vol. 6, p. 1 (1901)Google Scholar
  3. 3.
    Lowengrub, J., Truskinovsky, L.: Cahn-Hilliard Fluids and Topological Transitions. Proc. Roy. Soc. London A vol. p. (1997)Google Scholar
  4. 4.
    Zeldovich, Y. B.: About Surface Tension of a Boundary between two Mutually Soluble Liquids. Zhur. Fiz. Khim. (in Russian) vol. 23, p. 931 (1949)Google Scholar
  5. 5.
    Davis, H. T. A Theory of Tension at a Miscible Displacement Front: in Numerical Simulation in Oil Recovery, Volumes in Mathematics and its Applications,; M. Wheeler, Ed.; Springer-Verlag: Berlin, 1988; pp 105Google Scholar
  6. 6.
    Rowlinson, J. S., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1982)Google Scholar
  7. 7.
    Rousar, I., Nauman, E. B.: A Continuum Analysis of Surface Tension in Nonequilibrium Systems. Chem. Eng. Comm. vol. 129, p. 19 (1994)CrossRefGoogle Scholar
  8. 8.
    Garik, P., Hetrick, J., Orr, B., Barkey, D., Ben-Jacob, E.: Interfacial Cellular Mixing and a Conjecture on Global Deposit Morphology. Phys. Rev. Ltts vol. 66, p. 1606 (1991)CrossRefGoogle Scholar
  9. 9.
    Mungall, J. E.: Interfacial Tension in Misicible Two-Fluid Systems with Linear Viscoelastic Rheology. Phys. Rev. Ltts. vol. 73, p. 288 (1994)CrossRefGoogle Scholar
  10. 10.
    Castellanos, A., González, A.: Interfacial Electrohydrodynamic Instability: The Kath and Hoburg Model Revisited. Phys. Fluids A vol. 4, p. 1307 (1992)MATHCrossRefGoogle Scholar
  11. 11.
    Petitjeans, P., Maxworthy, T.: Miscrible displacements in capillary tubes. Part 1. Experiments. J. Fluid Mech. vol. 326, p. 37 (1996)CrossRefGoogle Scholar
  12. 12.
    Petitjeans, P.: Une Tension de Surface pour les Fluides Miscibles. C.R. Acad. Sci. Paris vol. 322, p. 673 (1996)Google Scholar
  13. 13.
    Joseph, D. D., Renardy, Y. Y.: Fundamentals of Two-Fluid Dynamics. Part II. Lubricated Transport, Drops and Miscible Fluids. Springer, New York (1992)Google Scholar
  14. 14.
    Pojman, J. A., Whitmore, C., Turco Liveri, M. L., Lombardo, R., Marszalek, J., Parker, R., Zoltowski, B.: Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids: Isobutyric Acid-Water and 1-Butanol-Water in a Spinning-Drop Tensiometer. Langmuir vol. 22, p. 2569 (2006)CrossRefGoogle Scholar
  15. 15.
    Cahn, J. W., Hilliard, J. E.: Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. vol. 28, p. 258 (1958)CrossRefGoogle Scholar
  16. 16.
    Chen, C.-Y., Meiburg, E.: Miscible displacements in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. vol. 326, p. 57 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    Chen, C.-Y., Wang, L., Meiburg, E.: Miscible Droplets in a Porous Medium and the Effect of Korteweg Stresses. Phys. Fluids vol. 13, p. 2447 (2001)CrossRefGoogle Scholar
  18. 18.
    Meiburg, E., Chen, C.-Y., Wang, L.-L.: The Dynamics of Miscible Interfaces and the Effects of Korteweg Stresses. Trans. Aero. Astro. Soc. R. O. C. vol. 33, p. 7 (2001)Google Scholar
  19. 19.
    Chen, C.-Y., Meiburg, E.: Miscible displacements in capillary tubes: Influence of Korteweg stresses and divergence effects. Phys. Fluids vol. 14, p. 2052 (2003)CrossRefGoogle Scholar
  20. 20.
    Volpert, V. A., Pojman, J. A., Texier-Picard, R.: Convection Induced by Composition Gradients in Miscible Systems. C. R. Mecanique vol. 330, p. 353 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Bessonov, N., Pojman, J. A., Volpert, V.: Modelling of Diffuse Interfaces with Temperature Gradients. J. Engineering Math. vol. 49, p. 321 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Bessonov, N., Pojman, J., Volpert, V.: Modelling of Miscible Liquids and Microgravity Experiments. Matapli (Journal of Le Société de Mathématiques Appliquées & Industrielle) vol. 75, p. 51 (2004)MathSciNetGoogle Scholar
  23. 23.
    Bessonov, N., Volpert, V. A., Pojman, J. A., Zoltowski, B. D.: Numerical Simulations of Convection Induced by Korteweg Stresses in Miscible Polymer-Monomer Systems. Microgravity Sci. Tech. vol. XVII, p. 8 (2005)CrossRefGoogle Scholar
  24. 24.
    Bessonov, N.; Pojman, J. A.; Volpert, V., Numerical Simulations of Transient Interfacial Phenomena in Miscible Fluids, Aiaa-2004-631, 42nd AIAA Aerospace Sciences Meeting, Reno, NV, 2004Google Scholar
  25. 25.
    Kamotani, Y., Ostrach, S.: Analysis of Velocity data taken in Surface Tension Driven Convection Experiment in Microgravity. Phys. Fluids vol. 6, p. 3601 (1994)CrossRefGoogle Scholar
  26. 26.
    Balasubramaniam, R., Lacy, C. E., Woniak, G., Subramanian, R. S.: Thermocapillary Migration of Bubbles and Drops at Moderate Values of the Marangoni Number in Reduced Gravity. Phys. Fluids vol. 8, p. 872 (1996)CrossRefGoogle Scholar
  27. 27.
    Antanovskii, L. K., Monti, R., R. Fortezza, G. D., Castagnolo, D.: Transient Marangoni Migration of a Bubble within a Solidifying Material in Microgravity Environment. ELGRA Annual Meeting and General Assembly vol. p. (1993)Google Scholar
  28. 28.
    Wei, H., Subramanian, R. S.: Migration of a Pair of Bubbles under the Combined Action of Gravity and Thermocapillarity. Journal of Colloid and Interface Science vol. 172, p. 395 (1995)CrossRefGoogle Scholar
  29. 29.
    Tomotika, S.: On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid. Proc. Roy. Soc. (London) vol. A150, p. 322 (1935)Google Scholar
  30. 30.
    Tomotika, S.: Breaking up of a Drop of Viscous Liquid Immersed in Another Viscous Fluid Which is Extending at a Uniform Rate. Proc. Roy. Soc. (London) vol. 153, p. 302 (1936)CrossRefMATHGoogle Scholar
  31. 31.
    Bessonov, N. M., Song, D. J.: Application of Vector Calculus to Numerical Solutions of Continuum Mechanics Problems. J. Comp. Phys. vol. 167, p. 22 (2001)MATHCrossRefGoogle Scholar
  32. 32.
    Sano, Y., Yamamoto, S.: Mutual Diffusion Coefficient of Aqueous Sugar Solutions. J. Chem. Engin. Japan vol. 26, p. 633 (1993)CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing 2007

Authors and Affiliations

  • John A. Pojman
    • 1
  • Nick Bessonov
    • 2
  • Vitaly Volpert
    • 2
  • Mark S. Paley
    • 3
  1. 1.Department of Chemistry & BiochemistryThe University of Southern MississippiHattiesburg
  2. 2.MAPLY UMR 5585Université Lyon IVilleurbanne CedexFrance
  3. 3.Marshall Space Flight Center XD42A-Z TechnologyHuntsville

Personalised recommendations