Microgravity - Science and Technology

, Volume 15, Issue 4, pp 39–44 | Cite as

Escherichia coli growth under modeled reduced gravity

  • Paul W. Baker
  • Michelle L. Meyer
  • Laura G. Leff


Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. WhenEscherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30–50 rpm). There was no apparent affect of removing samples on the results obtained. WhenE. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.


Minimal Medium Nutrient Broth Space Flight Normal Gravity Simulated Microgravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    Tixador, R., Gasset, G., Eche, B., Moatti, N., Lapchine, L., Woldringh, C., Toorop, P., Moatti, J. P., Delmotte, F.: Behavior of bacteria and antibiotics under space conditions. Aviat. Space Environ. Med. vol. 65, p. 551 (1994).Google Scholar
  2. [2]
    Gasset, G., Tixador, R., Eche, B., Lapchine, L., Moatti, N., Toorop, P., Woldringh, C.: Growth and division ofEscherichia coli under microgravity conditions. Res. Microbiol. vol. 145, p. 111 (1994).CrossRefGoogle Scholar
  3. [3]
    Kacena, M., Todd, P.: Growth characteristics ofE. coli and B. subtilis cultured on an agar substrate in microgravity. Micrograv. Sci. Technol. vol. 10, p. 58 (1997).Google Scholar
  4. [4]
    Klaus, D., Simske, S., Todd, P., Stodieck, L.: Investigation of space flight effects onEscherichia coli and a proposed model of underlying physical mechanisms. Microbiology vol. 143, p. 449 (1997).CrossRefGoogle Scholar
  5. [5]
    Kacena, M. A., Manfredi, B., Todd, P.: Effects of space flight and mixing on bacterial growth in low volume cultures. Micrograv. Sci. Technol. vol. 12, p. 74 (1999).Google Scholar
  6. [6]
    Kacena, M. A., Merrell, G. A., Manfredi, B., Smith, E. E., Klaus, D. M., Todd, P.: Bacterial growth in space flight: logistic growth curve parameters forEscherichia coli andBacillus subtilis. Appl. Microbiol. Biotechnol. vol. 51, p. 229 (1999).CrossRefGoogle Scholar
  7. [7]
    Kacena, M. A., Smith, E. E., Todd, P.: Autolysis ofEscherichia coli andBacillus subtilis cells in low gravity. Appl. Microbiol. Biotechnol. vol. 52, p. 437 (1999).CrossRefGoogle Scholar
  8. [8]
    Brown, R. B., Klaus, D., Todd, P.: Effects of space flight, clinorotation, and centrifugication on the substrate utilization efficiency ofE. coli. Micrograv. Sci. Tech. vol. 13, p. 24(2002).CrossRefGoogle Scholar
  9. [9]
    Todd, P., Klaus, D. M., Stodieck, S., Smith, J. D., Staehelin, L. A., Kacena, M., Manfredi, B. Bukhari, A.: Cellular responses to gravity: extracellular, intracellular and in-between. Adv. Space Res. vol. 21, p. 1263 (1998).CrossRefGoogle Scholar
  10. [10]
    Lorber, B.: The crystallization of biological macromolecules under microgravity: A way to more accurate three-dimensional structures. Biochimica et Biophysica Acta. vol. 1599, p. 1 (2002).Google Scholar
  11. [11]
    Nickerson, C. A., Ott, C. M., Ott, Wilson, J. W., Ramamurthy, R., LeBlanc, C. L., Höner zu Bentrup, K., Hammond, T., Pierson, D. L.: Low-shear modeled microgravity: a global regulatory signal affecting bacterial gene expression, physiology and pathogenesis. J. Microbiol. Methods vol. 54, p. 1 (2003).CrossRefGoogle Scholar
  12. [12]
    Thévenet, D., D’Ari, R., Bouloc, P.: The SIGNAL experiment BIO-RACK:Escherichia coli in microgravity. J. Biotechnol. vol. 47, p. 89 (1996).CrossRefGoogle Scholar
  13. [13]
    Gao, H., Ayyaswamy, P. S., Ducheyne, P.: Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Micrograv. Sci. Tech. vol. 10, p. 154 (1997).Google Scholar
  14. [14]
    Klaus, D. M., Todd, P., Schatz, A.: Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res. vol. 21, p. 1315 (1998).CrossRefGoogle Scholar
  15. [15]
    Hammond, T. G., Hammond, J. M.: Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Renal Physiol. vol. vn281, p. F12 (2001).Google Scholar
  16. [16]
    Klaus, D. M. Clinostats and bioreactors. Gravit. Space Biol. Bull. vol. 14, p. 55 (2001).Google Scholar
  17. [17]
    Baker, P. W., Leff, L.: The effect of simulated microgravity on bacteria from the Mir space station. Micrograv. Sci. Tech. vol. 15, p. 35 (2004).CrossRefGoogle Scholar
  18. [18]
    Boulos, L., Prévost, M., Barbeau, B., Coallier, J., Desjardins, R.: LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods vol. 37, p. 77 (1999).CrossRefGoogle Scholar
  19. [19]
    Porter, K. G., Feig, Y. S.: The use of DAPI for identification and counting of aquatic microflora. Limnol. Oceanogr. vol. 25, p. 943 (1980).CrossRefGoogle Scholar
  20. [20]
    Lemke, M. J., McNamara, C. J., Leff, L. G.: Comparison of methods for concentration of bacterioplankton for in situ hybridization. J. Microbiol. Methods vol. 29, p. 23 (1997).CrossRefGoogle Scholar
  21. [21]
    Amann, R. I., Ludwig, W., Schleifer, K.-H.: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. vol. 59, p. 143 (1995).Google Scholar
  22. [22]
    Nagel, U., Watzke, D., Neugebauer, D. C., Machemer-Röhnisch, Bräucker R. Machemer, H.: Analysis of sedimentation of immobilized cells under normal and hypergravity. Micrograv. Sci. Tech. vol. 10, p. 41 (1997).Google Scholar
  23. [23]
    Fang, A., Pierson, D. L., Mishra, S. K., Demain, A. L.: Growth ofStreptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl. Microbiol. Biotechnol. vol. 54, p. 33 (2000).CrossRefGoogle Scholar
  24. [24]
    Bölter, M., Bloem, J., Meiners, K., Möller, R.: Enumeration and biovolume determination of microbial cells — a methodological review and recommendation for applications in ecological research. Biol. Fert. Soils vol. 36, p. 249 (2002).CrossRefGoogle Scholar
  25. [25]
    Posch, T., Loferer-Kroßbacher, Gao, G., Alfreider, A., Pernthaler, J., Psenner, R.: Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquat. Microb. Ecol. vol. 25, p. 55 (2001).CrossRefGoogle Scholar
  26. [26]
    McNamara, C. J., Lemke, M. J., Leff, L. G.: Underestimation of bacterial numbers in starvation-survival mode using the nucleic acid stain DAPI. Arch. Hydrobiol. vol. 157, p. 309 (2003).CrossRefGoogle Scholar
  27. [27]
    Lebaron, P., Parthuisot, N. Catala, P.: Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl. Environ. Microbiol. vol. 64, p. 1725 (1998).Google Scholar
  28. [28]
    Van Ommen, F., Geesey, G. G.: Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs. Microb. Ecol. vol. 38, p. 201 (1999).CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing 2004

Authors and Affiliations

  • Paul W. Baker
  • Michelle L. Meyer
  • Laura G. Leff
    • 1
  1. 1.Dept. of Biological SciencesKent State UniversityUSA

Personalised recommendations