Microgravity - Science and Technology

, Volume 15, Issue 2, pp 25–34

Nonlinear Marangoni oscillations in multilayer systems

  • I. Simanovskii
  • P. Georis
  • A. Nepomnyashchy
  • J. C. Legros
Article

Abstract

Nonlinear regimes of Marangoni convection in a real symmetric three-layer system with close values of thermal diffusivities of fluids are investigated. The predictions of the linear stability theory and experiments concerning the appearance of oscillations, are justified. The transitions between different oscillatory flow regimes have been studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Smith, K. A.: On convective instability induced by surface-tension gradients. J. Fluid Mech., vol. 24, p. 401 (1966).CrossRefGoogle Scholar
  2. [2]
    Zeren, W., Reynolds, W.: Thermal instabilities in two-fluid horizontal layers. J. Fluid Mech., vol. 53, p. 305 (1972).MATHCrossRefGoogle Scholar
  3. [3]
    Simanovskii, I. B., Nepomnyashchy, A. A.: Convective Instabilities in Systems with Interface. Gordon and Breach, London (1993).MATHGoogle Scholar
  4. [4]
    Juel, A., Burgess, J. M., McCormick, W. D., Swift, J. B., Swinney, H. L.: Surface-tension-driven convection patterns in two liquid layers. Physica D, vol. 143, p. 169 (2000).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Doi, T., Koster, J. N.: Thermocapillary convection in two immiscible layers with free surface. Phys. Fluids, vol. A5, p. 1914 (1993).Google Scholar
  6. [6]
    Georis P., Legros J.-C.: Pure thermocapillary convection in multilayer system: first results from the IML-2 mission. In: Materials and Fluids under Low Gravity, ed. by L. Ratke, H. Walter and B. Feuerbacher (Springer, Berlin, Heidelberg 1996) pp. 299–311.CrossRefGoogle Scholar
  7. [7]
    Groothuis, H., Zuiderweg, F. J.: Influence of mass transfer on coalescence of drops. Chem. Eng. Sci., vol. 12, p. 288 (1960).CrossRefGoogle Scholar
  8. [8]
    Simanovskii, I. B.: Anticonvective, steady and oscillatory mechanisms of instability in three-layer systems, Physica D, vol. 102, p. 313 (1997).CrossRefGoogle Scholar
  9. [9]
    Simanovskii, I., Georis, P., Hennenberg, M., Van Vaerenbergh, S., Wertgeim, I., Legros, J.-C.: Numerical Investigation on Marangoni-Benard Instability in Multilayer Systems. Proc. VIII European Symposium on Materials and Fluid Sciences in Microgravity. Brussels, Belgium, ESA SP-333, p. 729 (1992).Google Scholar
  10. [10]
    Liu, Q., Roux, B.: Instability of Thermocapillary Convection in Multiple Superposed in Immiscible Liquid Layers. Proc. VIII European Symposium on Materials and Fluid Sciences in Microgravity. Brussels, Belgium, ESA SP-333, p. 735 (1992).Google Scholar
  11. [11]
    Georis, P., Hennenberg, M., Simanovskii, I., Nepomnyashchy, A., Wertgeim, I., Legros, J.-C.: Thermocapillary Convection in Multilayer System. Phys. Fluids, vol. A5, p. 1575 (1993).Google Scholar
  12. [12]
    Nepomnyashchy, A. A., Simanovskii, I. B.: Combined Action of Different Mechanisms of Convective Instability in Multilayer Systems. Phys. Rev. E, vol. 59, p. 6672 (1999).CrossRefGoogle Scholar
  13. [13]
    Georis, P., Hennenberg, M., Lebon, G., Legros, J.-C.: Investigation of Thermocapillary Convection in a Three-liquid-layer System. J. Fluid Mech., vol. 389, p. 209 (1999).MATHCrossRefGoogle Scholar
  14. [14]
    Simanovskii, I., Georis, P., Nepomnyashchy, A., Legros, J.-C.: Oscillatory Instability in Multilayer Systems. Phys. Fluids, vol. 15, p. 3867 (2003).CrossRefMathSciNetGoogle Scholar

Copyright information

© Z-Tec Publishing 2004

Authors and Affiliations

  • I. Simanovskii
    • 1
    • 2
  • P. Georis
    • 3
  • A. Nepomnyashchy
    • 1
    • 2
  • J. C. Legros
    • 3
  1. 1.Dept. of Mathematics, TechnionIsrael
  2. 2.Institute of TechnologyHaifaIsrael
  3. 3.Service de Chimie Physique EPUniversite Libre de BruxellesBrusselsBelgium

Personalised recommendations