Microgravity - Science and Technology

, Volume 14, Issue 3, pp 17–24 | Cite as

Gravitactic signal transduction elements in astasia longa investigated during parabolic flights

  • Peter R. Richter
  • Martin Schuster
  • Michael Lebert
  • Donat-P. Häder
Article

Abstract

Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitactic behavior. Many experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism. The goal of the present study was to examine elements in the sensory transduction by means of inhibitors of gravitaxis and the intracellular calcium concentration during short microgravity periods. During the course of six parabolic flights (ESA 31th parabolic flight campaign and DLR 6th parabolic flight campaign) the effects of trifluoperazine (calmodulin inhibitor), caffeine (phosphodiesterase inhibitor) and gadolinium (blocks mechano-sensitive ion channels) was investigated. Due to the extreme parabolic flight maneuvers of the aircraft alternating phases of 1.8×gn (about 20 s) and microgravity (about 22 s) were achieved (gn: acceleration of Earth’s gravity field). The duration of the microgravity periods was sufficient to detect a loss of cell orientation in the samples. In the presence of gadolinium impaired gravitaxis was found during acceleration, while caffeine-treated cells showed, compared to the controls, a very precise gravitaxis and faster reorientation in the 1.8×gn period following microgravity. A transient increase of the intracellular calcium upon increased acceleration was detected also in inhibitor-treated samples. Additionally, it was found that the cells showed a higher calcium signal when they deviated from the vertical swimming direction. In the presence of trifluoperazine a slightly higher general calcium signal was detected compared to untreated controls, while gadolinium was found to decrease the intracellular calcium concentration. In the presence of caffeine no clear changes of intracellular calcium were detected compared to the control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Häder, D.-P., Porst, M., Tahedl, H., Richter, P., Lebert, M.: Gravitactic Orientation in the FlagellateEuglena gracilis. Microgravity Science and Technology, vol. 10, p. 53 (1997).Google Scholar
  2. 2.
    Häder, D.-P.: Gravitaxis and Phototaxis in the FlagellateEuglena Studied on TEXUS Missions. In: Life Science Experiments Performed on Sounding Rockets (1985–1994). Cogoli, A., Friedrich, U., Mesland, D. and Demets, R. (Eds.), ESA Publications Division, p. 77, (1997)Google Scholar
  3. 3.
    Häder, D.-P.: NIZEMI — Experiments on the Slow Rotating Centrifuge Microscope during the IML-2 Mission. Journal of Biotechnology, vol. 47, p. 223 (1996).CrossRefGoogle Scholar
  4. 4.
    Lebert, M. andHäder, D.-P.: HowEuglena Tells Up from Down. Nature, vol. 379, p. 590 (1996).CrossRefGoogle Scholar
  5. 5.
    Lebert, M., Häder, D.-P.: Negative Gravitactic Behavior ofEuglena graci lis can not be Described by the Mechanism of Buoyancy-Oriented Upward Swimming. Advanced Space Research, vol. 24, p. 843 (1999).CrossRefGoogle Scholar
  6. 6.
    Tahedl, H., Richter, P., Lebert, M., Häder, D.-P.: cAMP is Involved in Gravitaxis Signal Transduction ofEuglena gracilis. Microgravity Science and Technology, vol. 11, p. 173 (1998).Google Scholar
  7. 7.
    Streb, C., Richter, P., Ntefidou, N., Lebert, M., Häder, D.-P.: Sensory Transduction of Gravitaxis inEuglena gracilis. Journal of Plant Physiology, vol. 159, p. 855 (2002).CrossRefGoogle Scholar
  8. 8.
    Lebert, M., Häder, D.-P.: Image analysis: A Versatile Tool for Numerous Applications. G.I.T. Special Edition Imaging Microscopy, vol. 1, p. 5 (1999).Google Scholar
  9. 9.
    Richter, P., Lebert, M., Tahedl, H., Häder, D.-P.: Calcium is Involved in the Gravitactic Orientation in Colorless Flagellates. Journal of Plant Physiology, vol. 158, p. 689 (2001).CrossRefGoogle Scholar
  10. 10.
    Richter, P., Lebert, M., Korn, R., Häder, D.-P.: Possible Involvement of the Membrane Potential in the Gravitactic Orientation ofEuglena gracilis. Journal of Plant Physiology, vol. 158, p. 35 (2001).CrossRefGoogle Scholar
  11. 11.
    Machemer-Röhnisch, S., Nagel, U., Machemer, H.: A Gravity-Induced Regulation of Swimming Speed inEuglena gracilis. Journal of Comparative Physiology, vol. 185, p. 517 (1999).CrossRefGoogle Scholar
  12. 12.
    Kamphius, A.: Digitale Pfadanalyse am Beispiel der Schwerkraftausrichtung vonEuglena gracilis in Flachküvetten (in German). Dissertation Rheinische-Friedrich-Wilhelms-University Bonn, Germany (1999).Google Scholar
  13. 13.
    Lebert, M., Porst, M., Richter, P., Häder, D.-P.: Physical Characterization of Gravitaxis inEuglena gracilis. Journal of Plant Physiology, vol. 155, p. 338 (1999).Google Scholar
  14. 14.
    Richter, P. R., Schuster, M., Wagner, H., Lebert, M., Häder, D.-P.: Physiological Parameters of Gravitaxis in the FlagellateEuglena gracilis Obtained During a Parabolic Flight Campaign. Journal of Plant Physiology, vol. 159, p. 181 (2002).CrossRefGoogle Scholar
  15. 15.
    Checcucci, A., Colombetti, G., Ferrara, R., Lenci, F.: Action Spectra for Photoaccumulation of Green and ColorlessEuglena: Evidence for Identification of Receptor Pigments. Photochemistry Photobiology, vol. 23, p. 51 (1976).CrossRefGoogle Scholar
  16. 16.
    Starr, R. C.: The Culture Collection of Algae at Indiana University. American Journal of Botany, vol. 51, p. 1013 (1964).CrossRefGoogle Scholar
  17. 17.
    Eberhard, M., Erne, P.: Calcium Binding to Fluorescent Calcium Indicators: Calcium Green, Calcium Orange and Calcium Crimson. Biochemical Biophysical Research Communication, vol. 180, p. 209 (1991).CrossRefGoogle Scholar
  18. 18.
    Haugland, R. P.: Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes, Eugene, Oregon (1997).Google Scholar
  19. 19.
    Lebert, M. andHäder, D.-P.: Image analysis: A versatile tool for numerous applications. GIT Laboratory Journal, Special Edition Bioforum International. Imaging Microscopy. 1/99, 5–6 (1999)Google Scholar
  20. 20.
    Yang, X.-C., Sachs, F.: Block of Stretch-Activated Ion Channels inXenopus Oocytes by Gadolinium and Calcium Ions. Science, vol. 243, p. 1068 (1989).CrossRefGoogle Scholar
  21. 21.
    Hamill, O. P., McBride, D. W. J.: The Pharmacologyof Mechanogated Membrane Ion Channels. Pharmacological Reviews, vol. 48, p. 231 (1996).Google Scholar
  22. 22.
    Sachs, F., Morris, C. E., in: Reviews of Physiology and Biochemistry and Pharmacology. Blaustein, M. P., Greger, R., Grunicke, H., Jahn, R., Mendell, L. M., Miyajima, A., Pette, D., Schultz, G., Schweiger, M. (Eds.), Springer-Verlag, Berlin, p. 1 (1998).Google Scholar
  23. 23.
    Thomas, A. P.: Methods in Toxicology. Academic Press, San Diego, vol. 1B, p. 287 (1994).Google Scholar
  24. 24.
    Richter, P., Häder, D.-P., In: Image Analysis: Methods and Applications. Häder, D.-P., (Ed.), CRC Press, Boca Raton, p. 373 (2000).Google Scholar
  25. 25.
    Lebert, M., in: Comprehensive Series in Photosciences. Häder, D.-P., Lebert, M. (Eds.), Elsevier Press, Amsterdam, London, New York, Oxford, Paris, Shannon, Tokyo p. 297 (2001).Google Scholar
  26. 26.
    Levin, R. M., Weiss, B.: Binding of Trifluoperazine to the Calcium-Department Activator of Cyclic Nucleotides. Molecular Pharmacology, vol. 13, p. 690 (1977).Google Scholar
  27. 27.
    Fabczak, H., Walerczyk, M., Sikora, J., Fabczak, S.: Ciliary and Flagellar Activity Control in Eukaryotic Cells by Second Messengers: Calcium Ions and Cyclic Nucleotides. Acta Protozoologica, vol. 38, p. 87 (1999).Google Scholar
  28. 28.
    Tong, I., Edmunds L. N. Jr.,: Role of Cyclic GMP in the Mediation of Circadian Rhythmicity of the Adenylate Cyclase-Cyclic AMP-Phosphodiesterase System inEuglena. Biochemical Pharmacology, vol. 45, p. 2087 (1993).CrossRefGoogle Scholar
  29. 29.
    Porst, M.: Langzeitversuche in artifiziellen Ökosystemen und Untersuchungen zur Gravitaxis (in German). Dissertation, Friedrich-Alexander University, Erlangen-Nuremberg, Germany (1998).Google Scholar
  30. 30.
    Länge, S., Wissmann, J.-D., Plattner, H.: Caffeine Inhibits Ca2+ Uptake by Subplasmalemmal Calcium Stores (‘Alveolar Sacs’) Isolated fromParamecium Cells. Biochimical Biophysical Acta, vol. 1278, p. 191 (1996).CrossRefGoogle Scholar
  31. 31.
    Longergan, T. A.: Regulation of Cell Shape inEuglena gracilis. VI. Localization of Actin, Myosin and Calmodulin. Journal of Cell Science, vol. 77, p. 197 (1985).Google Scholar

Copyright information

© Z-Tec Publishing 2003

Authors and Affiliations

  • Peter R. Richter
  • Martin Schuster
  • Michael Lebert
  • Donat-P. Häder
    • 1
  1. 1.Lehrstuhl für Ökophysiologie der PflanzenFriedrich-Alexander-UniversitätErlangenGermany

Personalised recommendations