Microgravity - Science and Technology

, Volume 18, Issue 3–4, pp 184–189

JAXA-GCF project - high-quality protein crystals grown under microgravity environment for better understanding of protein structure

  • Masaru Sato
  • Hiroaki Tanaka
  • Koji Inaka
  • Shinichi Shinozaki
  • Ari Yamanaka
  • Sachiko Takahashi
  • Mari Yamanaka
  • Erika Hirota
  • Shigeru Sugiyama
  • Mitsuyasu Kato
  • Chie Saito
  • Satoshi Sano
  • Moritoshi Motohara
  • Tai Nakamura
  • Tomoyuki Kobayashi
  • Susumu Yoshitomi
  • Tetsuo Tanaka
Article

Abstract

Since 2003, Japan Aerospace Exploration Agency (JAXA, former NASDA) has been conducting a project on a semi-annual basis (JAXA-GCF) to obtain high-quality protein crystals in the microgravity environment using the Russian transportation system. For this project, protein samples were mostly provided by Japanese users for whom JAXA provided technical and clerical support for crystallization experiments in microgravity. For the project, JAXA has constructed a user-friendly support service for microgravity experiments and provided regular and frequent flight opportunities. To simplify and improve technological matters, JAXA devised a gel-tube method crystallization device, which is effective both in space and on ground, based on the counter-diffusion technique. JAXA also provided ground-based techniques for efficient preliminary optimization of crystallization conditions using a 1-dimensional simulation and for harvesting and cryoprotecting crystals before X-ray diffraction experiments. These improvements have significantly increased the success rate of obtaining useful results. In conclusion, JAXA has developed technologies for growing, in microgravity, high-quality protein crystals, which may diffract up to atomic resolution, for a better understanding of 3-dimensional protein structures through X-ray diffraction experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Littke, W., John, C.: Protein single crystal growth under microgravity. J. Cryst. Growth, vol. 76, p. 663 (1986).CrossRefGoogle Scholar
  2. 2).
    Delucas, L. J., Smith, C. D., Smith, H. W., Senadhi, V. K., Senadhi, S. E., Ealick, S. E., Bugg, C. E., Carter, D. C., Snyder, R. S., Weber, P. C., Salemme, F. R., Ohlendorf, D. H., Einspahr, H. M., Clancy, L., Navia, M. A., Mckeever, B., Nagabhushan, T. L., Nelson, G., Babu, Y. S., McPherson, A., Koszelak, S., Stammers, D., Powell, K., Darby, G.: Protein crystal growth in microgravity. Science, vol. 246, p. 651 (1989).CrossRefGoogle Scholar
  3. 3).
    Snell, E. H., Weisgerber, S., Helliwell, J. R., Weckert, E., Hölzer, K., Schroer, K.: Improvements in lysozyme protein crystal perfection though microgravity growth. Acta Cryst., vol. D51, p. 1099 (1995).Google Scholar
  4. 4).
    McPherson, A.: Crystallization of Biological Macromolecules. Cold Spring Harbor Lab. Press, New York, (1999).Google Scholar
  5. 5).
    Kundrot, C. E., Judge, R. A., Pusey, M. L., Snell, E. H.: Microgravity and macromolecular crystallography. Crystal Growth & Design, vol. 1 (1), p. 87 (2001)CrossRefGoogle Scholar
  6. 6).
    Otálora, F., Novella, M. L., Gavira, J. A., Thomas, B. R., García-Ruiz, J. M.: Experimental evidence for the stability of the depletion zone around a growing protein crystal under microgravity. Acta Cryst. vol. D57, p. 412 (2001).Google Scholar
  7. 7).
    http://www.nap.edu/books/0309069750/htmlGoogle Scholar
  8. 8).
    http://www.esf.org/publication/126/APCF.pdfGoogle Scholar
  9. 9).
    Lee, C. P., Chernov, A. A.: Solutal convection around growing protein crystals and diffusional purification in space. J. Cryst. Growth, vol. 240, p. 531 (2002).CrossRefGoogle Scholar
  10. 10).
    Vergara, A., Lorber, B., Zagari, A., Giege, R.: Physical aspects of protein crystal growth investigated with the Advanced Protein Crystallization Facility in reduced-gravity environments. Acta Cryst., vol. D59, p. 2 (2003).Google Scholar
  11. 11).
    García-Ruiz, J. M., Gonzarez-Ramirez, L. A., Gavira, J. A., Otalora, F.: Granada Crystallization Box: a new device for protein crsytallisation by counter-diffusion techniques. Acta Cryst., vol. D58, p. 1638 (2002).Google Scholar
  12. 12).
    Tanaka, H., Inaka, K., Sugiyama, S., Takahashi, S., Sano, S., Sato, M., Yoshitomi, S.: A simplified counter diffusion method combined with a 1D simulation program for optimizing crystallization conditions. J. Synchrotron Rad., vol. 11, p. 45 (2004).CrossRefGoogle Scholar
  13. 13).
    García-Ruiz, J. M., Moreno, A., Viedma, C., Coll, M.: Crystal quality of lysozyme single crystals grown by the gel acupuncture method. Mater. Res. Bull., vol. 28(6), p. 541 (1993).CrossRefGoogle Scholar
  14. 14).
    Otálora, F., García-Ruiz, J.M.: Computer model of the diffusion/reaction interplay in the gel acupuncture method. J Cryst. Growth, vol. 169, p. 361 (1996)CrossRefGoogle Scholar
  15. 15).
    http://idb.exst.jaxa.jpGoogle Scholar
  16. 16).
    Kinoshita, T., Maruki, R., Warizaya, M., Nakajima, H., Nishimura, S.: Structure of a high-resolution crystal form of human triosephosphate isomerase: improvement of crystals using the gel-tube method. Acta Cryst., F61, p. 346 (2005)Google Scholar

Copyright information

© Z-Tec Publishing 2006

Authors and Affiliations

  • Masaru Sato
    • 1
  • Hiroaki Tanaka
    • 2
  • Koji Inaka
    • 3
  • Shinichi Shinozaki
    • 2
  • Ari Yamanaka
    • 2
  • Sachiko Takahashi
    • 2
  • Mari Yamanaka
    • 2
  • Erika Hirota
    • 2
  • Shigeru Sugiyama
    • 3
  • Mitsuyasu Kato
    • 1
  • Chie Saito
    • 1
  • Satoshi Sano
    • 1
  • Moritoshi Motohara
    • 1
  • Tai Nakamura
    • 1
  • Tomoyuki Kobayashi
    • 1
  • Susumu Yoshitomi
    • 1
  • Tetsuo Tanaka
    • 1
  1. 1.Japan Aerospace Exploration AgencyIbarakiJapan
  2. 2.Japan Space ForumTokyoJapan
  3. 3.Maruwa Food Industries, Inc.NaraJapan

Personalised recommendations