American Journal of Potato Research

, Volume 80, Issue 2, pp 103–115 | Cite as

Potato microtuber production and performance: A review

  • Danielle J. Donnelly
  • Warren K. Coleman
  • Shirlyn E. Coleman


Almost half a century has passed sincein vitro tubers (microtubers) were first described in potato, but their adoption as a seed propagule has been uneven globally. Consensus is lacking regarding optimal production practices for microtubers and their relative productivity in relation to other propagules for minituber production. There is significant uncertainty regarding the utility of microtubers for evaluation of agronomic characters. However, the application of microtubers in germplasm conservation is widely accepted. Microtubers are producedin vitro in a plethora of different growing systems with varying environment, media constituents, and storage intervals. Many of the interactions between growth parametersin vitro and subsequent productivity appear to be genotype-specific. Accordingly, microtubers come in different sizes, have different dormancy requirements, and differ widely in relative growth potential and productivity. Despite these differences, there is evidence for strong analogies in growth responses between fieldgrown tubers and microtubers. The use of microtuber technology in seed tuber production, breeding programs, germplasm conservation, and research appears to have enormous potential. This review discusses microtuber production, yield and performance,in vitro screening, and germplasm storage and exchange.

Additional Key Words

Bioreactor conservation microtuber induction seed tuber production Solanum tuberosum 



acetylsalicylic acid




(2-chloroethyl) trimethylammonium chloride


day/night cycle


fresh weight


gibberellic acid








Murashige and Skoog basal salt medium


naphthalene acetic acid


photosynthetically active radiation


Casi medio siglo ha transcurrido desde que los tubérculosin vitro (microtubérculos) fueran descritos en papa por primera vez, pero su adopción como propágulos semilias ha sido irregular a nivel mundial. Falta consenso con respecto a las prácticas optimas de producción de microtubérculos y su relativa productividad en relación con otros propágulos para la producción de minitubérculos. Existen dudas significativas en relación con la utilidad de los microtubérculos para la evaluación de caracteres agronómicos. Sin embargo, el uso de microtubérculos para la conservación del germoplasma está ampliamente aceptado. Los microtubérculos son producidosin vitro en una infmidad de sistemas de crecimiento con medio ambiente variado, diferentes constituyentes de los medios de cultivo e intervalos de almacenamiento variados. Muchas de las interacciones entre los parámetros de crecimientoin vitro y la subsiguiente productividad parece ser específica para el genotipo. En consecuencia, los tubérculos vienen en diferentes tamaños, tienen diferentes requerimientos de latencia y se diferencian ampliamente en lo que respecta al potential de crecimiento relativo y a la productividad. A pesar de estas diferencias, existe evidencia de fuertes analogías en hi respuesta de crecimiento entre los tubérculos obtenidos en el campo y los microtubérculos. El empleo de la tecnología de microtubérculos en la producción de semilla, programas de mejoramiento, conservación del germoplasma e investigación parece tener un potential enorme. Esta revisión analiza la producción de microtubérculos, rendimiento y comportamiento, tamizadoin vitro y almacenamiento e intercambio de germoplasma.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abbott AJ, and AR Belcher. 1986. Potato tuber formationin vitro.In: LA Withers, PG Alderson (eds), Plant Tissue Culture and its Agricultural Applications. Butterworths, London. pp. 113–122.Google Scholar
  2. Abdala G, G Castro, M Guiñazú, R Tizio, and O Miersch. 1996. Occurrence of jasmonic acid in organs ofSolanum tuberosum L. and its effect on tuberization. Plant Growth Reg 19:139–143.CrossRefGoogle Scholar
  3. Ahloowalia BS. 1994. Production and performance of potato minitubers. Euphytica 75:163–172.CrossRefGoogle Scholar
  4. Akita M, and Y Ohta. 1998. A simple method for mass propagation of potato (Solanum tuberosum L.) using a bioreactor without forced aeration. Plant Cell Rep 18:284–287.CrossRefGoogle Scholar
  5. Akita M, and S Takayama. 1988. Mass propagation of potato tubers using jar fermentor techniques. Acta Hort 230:55–61.Google Scholar
  6. Akita M, and S Takayama. 1993. Effects of medium surface level control on the mass propagation of potato tubers using a jar fermentor culture technique. Plant Tiss Cult Let 10:242–248.Google Scholar
  7. Akita M, and S Takayama. 1994a. Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Rep 3:184–187.Google Scholar
  8. Akita M, and S Takayama. 1994b. Induction and development of potato tubers in a jar fermentor. Plant Cell Tiss Org Cult 36:177–182.CrossRefGoogle Scholar
  9. Ali A, SMM Alam, and V Souza Machado. 1995. Potato minituber production from nodal cuttings compared to wholein vitro plantlets using low volume media in a greenhouse. Potato Res 38:69–76.CrossRefGoogle Scholar
  10. Alsadon AA, KW Knutson, and JC Wilkinson. 1988. Relationships between microtuber and minituber production and yield characteristics of six potato cultures. Am Potato J 65:468. (abst)Google Scholar
  11. Altoveros EC, BA Kebasen, GS Rodulfo, CN Paet, JU Alisto, ME Torillos, and MGE Felizarta. 1996. Collection and maintenance of potato germ plasm.In: ET Rasco Jr., FB Aromin (eds), South-east Asian Program for Potato Research and Development, Manila (Philippines) SAPPRAD on the 4th year of phase 3:Sel Res Pap July 1994 – June 199, vol l:potato pp. 1–18.Google Scholar
  12. Avila A de L, SM Pereyra, and JA Argüello. 1998. Nitrogen concentration and proportion of NH4+-N affected potato cultivar response in solid and liquid media. HortSci 33:336–338.Google Scholar
  13. Bandara PMS, and KK Tanino. 1995. Paclobutrazol enhances minituber production in Norland potatoes. J Plant Growth Reg 14:151–155.CrossRefGoogle Scholar
  14. Barker WG. 1953. A method for thein vitro culturing of potato tubers. Science 118:384–385.PubMedCrossRefGoogle Scholar
  15. Bizarri M, L Borghi, and P Ranalli. 1995. Effects of activated charcoal effects on induction and development of microtubers in potato (Solanum tuberosum L.). Ann Appl Biol 127:175–181.CrossRefGoogle Scholar
  16. Boiteau G, LM Moore, and D Wattie. 2000. Comparative analysis of aphid vector behavior in response to potato plants grown from field tubers, minitubers or plantlets. Am J Potato Res 77:71–75.Google Scholar
  17. Caldiz DO. 1996. Seed potato (Solanum tuberosum L.) yield and tuber number increase after foliar applications of cytokinins and gibberellic acid under field and glasshouse conditions. Plant Growth Reg 20:185–188.CrossRefGoogle Scholar
  18. Castro G, G Abdala, C Agüero, and R Tizio. 2000. Interaction between jasmonic and gibberellic acids onin vitro tuberization of potato plantlets. Potato Res 43:83–88.CrossRefGoogle Scholar
  19. Chandra R, GJ Randhawa, and DR Chaudhary. 1992. Use of ordinary sugar inin vitro production of potato microtubers. J Indian Pot Assoc 19:87–89.Google Scholar
  20. Charles G, L Rossignol, and M Rossignol. 1995. Mise au point d’un modèle de développement et de tubérisation condôlés et synchrones chez la pomme de terre cultivéein vitro. Acta Bot Gal 142:289–300.Google Scholar
  21. Chen J-J, and Y-J Liao. 1993. Nitrogen-induced changes in the growth and metabolism of cultured potato tubers. J Am Soc Hort Sci 118:831–834.Google Scholar
  22. Coleman WK, and SE Coleman. 2000. Modification of potato microtuber dormancy during induction and growthin vitro orex vitro. Am J Potato Res 77:103–110.Google Scholar
  23. Coleman WK, DJ Donnelly, and SE Coleman. 2001. Potato microtubers as research tools: A review. Am J Potato Res 78:47–55.Google Scholar
  24. Désiré S, J-P Couillerot, and J Vasseur. 1995. Germination en serre des microtubercules de Pomme de terre (Solanum tuberosum L.) produitsin vitro: influence du diamètre, de la densité de plantation et de l’âge des microtubercules sur le rendement. Acta Bot Gal 142:379–387.Google Scholar
  25. Dobranszki J, and M Mandi. 1993. Induction of in vitro tuberization by short day period and dark treatment of potato shoots grown on hormone-free medium. Acta Biol Hung 44:411–420.PubMedGoogle Scholar
  26. Dodds JH. 1988. Tissue culture technology: Practical application of sophisticated methods. Am Potato J 65:167–180.CrossRefGoogle Scholar
  27. Estrada R, P Tovar, and JH Dodds. 1986. Induction ofin vitro tubers in a broad range of potato genotypes. Plant Cell Tiss Org Cult 7:3–10.CrossRefGoogle Scholar
  28. Ewing EE, and PC Struik. 1992. Tuber formation in potato: induction, initiation and growth.In: J. Janick (ed), Horticultural Review. John Wiley & Sons Inc., New York. 14:89–198.Google Scholar
  29. FAO. 1995. Potatoes in the 1990s. Situation and Prospects of the World Potato Economy. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  30. Fletcher PJ, JD Fletcher, and RJ Cross. 1998. Potato germplasm:in vitro storage and virus reduction. New Zealand J Crop and Hort Sci. 26:249–252.Google Scholar
  31. Forti E, G Mandolino, and P Ranalli. 1991.In vitro tuber induction: influence of the variety and of the media. Acta Hort 300:127–132.Google Scholar
  32. Gable BV, OS Melik-Sarkisov, LN Tsoglin, SL Chernobrovkin, and VN Ovchinnikov, 1990. Hydroponic installation for cultivation of seed minitubers of potato. Fiziol Rast 38:1032–1035.Google Scholar
  33. Garner N, and J Blake. 1989. The induction and development of potato microtubersin vitro on media free of growth regulating substances. Ann Bot 63:663–674.Google Scholar
  34. Gopal J, and JL Minocha. 1997. Effectiveness of selection at microtuber crop level in potato. Plant Breed 116:293–295.CrossRefGoogle Scholar
  35. Gopal J, and JL Minocha. 1998. Effectiveness ofin vitro selection for agronomic characters in potato. Euphytica 103:67–74.CrossRefGoogle Scholar
  36. Gopal J, L Minocha, and HS Dhaliwal. 1998. Microtuberization in potato (Solanum tuberosum L). Plant Cell Rep 17:794–798.CrossRefGoogle Scholar
  37. Gopal J, JL Minocha, and JS Sidhu. 1997. Comparative performance of potato crops raised from microtubers induced in the dark versus microtubers induced in light. Potato Res 40:407–412.CrossRefGoogle Scholar
  38. Hao Z, F Ouyang, Y Geng, X Deng, Z Hu, and Z Chen. 1998. Propagation of potato tubers in a nutrient mist bioreactor. Biotech Tech 12:641–644.CrossRefGoogle Scholar
  39. Harvey BMR, SH Crothers, NE Evans, and C Selby. 1991. The use of growth retardants to improve microtuber formation by potato (Solanum tuberosum). Plant Cell Tiss Org Cult 27:59–64.CrossRefGoogle Scholar
  40. Haverkort AJ, and DE van der Zaag. 1989. Innovative techniques in seed potato production in the Netherlands. CABO-Verslag No. 124. Centre for Agrobiological Research Wageningen.Google Scholar
  41. Haverkort AJ, MVan de Waart, and J Marinus. 1991. Field performance of potato microtubers as a propagation material. Potato Res 34:353–364.CrossRefGoogle Scholar
  42. Hoque MI, NB Mila, MDS. Khan, and RH Sarker. 1996. Shoot regeneration andin vitro microtuber formation in potato (Solanum tuberosum L). Bangladesh J Bot 25:87–93.Google Scholar
  43. Hulscher M, HT Krijgsheld, and E Jongedijk. 1996. Mass propagation of potato microtubers in jar fermentors. Proc Int Sym Plant Prod in Closed Ecosystems. Acta Hort 440:533–538.Google Scholar
  44. Hussey G, and NJ Stacey. 1984. Factors affecting the formation ofin vitro tubers of potato (Solanum tuberosum L.) Ann Bot 53:565–578.Google Scholar
  45. Jimenez E, N Pérez, Mde Feria, R Barbón, A Capote, M Chávez, E Quiala, and JC Pérez. 1999. Improved production of potato microtubers using a temporary immersion system. Plant Cell Tiss Org Cult 59:19–23.CrossRefGoogle Scholar
  46. Jones ED 1988. A current assessment ofin vitro culture and other rapid multiplication methods in North America and Europe. Am Potato J 65:209–220.CrossRefGoogle Scholar
  47. Joung H, JH Jeon, and HS Kem. 1994 Agricultural application of potato microtubers in KoreaIn: ET Rasco Jr., FB Aromin (eds), Proc. fourth APA (Asian Potato Assoc) Triennial Conference (Philippines). 2:177–178.Google Scholar
  48. Khuri S, and J Moorby. 1995. Investigations into the role of sucrose in potatocv Estima microtuber productionin vitro. Ann Bot 75:295–303.CrossRefGoogle Scholar
  49. Khuri S, and J Moorby. 1996. Nodal segments or microtubers as explants forin vitro microtuber production of potato. Plant Cell Tiss Org Cult 45:215–222.CrossRefGoogle Scholar
  50. Kiyota H, M Saitoh, T Oritani, and T Yoshihara. 1996. Synthesis and potato tuber-inducing activity of methyl5′,5′,5′-trifluorojasmonate. Phytochem 42:1259–1262.CrossRefGoogle Scholar
  51. Koda Y, and Y Okazawa, 1983. Influences of environmental, hormonal and nutritional factors on potato tuberizationin vitro. Japan J Crop Sci 52:582–591.Google Scholar
  52. Koda Y, EA Omer, T Yoshihara, H Shibata, S Sakamura, and Y. Okazawa. 1988. Isolation of a specific potato tuber-inducing substance from potato leaves. Plant Cell Physiol 29:1047–1051.Google Scholar
  53. Kwiatkowski S, MW Martin, CR Brown, and CJ Sluis. 1988. Serial microtuber formation as a long-term conservation method forin vitro potato germplasm. Am Potato J 65:369–375.CrossRefGoogle Scholar
  54. Leclerc Y, and DJ Donnelly. 1990. Seasonal differences in the field performance of micropropagated potato under a short growing season in Quebec. Am Potato J 67:507–516.CrossRefGoogle Scholar
  55. Leclerc Y, D Donnelly, and JEA Seabrook. 1994. Microtuberization of layered shoots and nodal cuttings of potato: The influence of growth regulators and incubation periods. Plant Cell Tiss Org Cult 37:113–120.CrossRefGoogle Scholar
  56. Lentini Z. 1988.In vitro screening for early tuberization of potatoes. Agricell Rep11:11.Google Scholar
  57. Lentini Z, and ED Earle 1991.In vitro tuberization of potato clones from different maturity groups. Plant Cell Rep 9:691–695.CrossRefGoogle Scholar
  58. Levy D, JEA Seabrook, and S Coleman. 1993. Enhancement of tuberization of axillary shoot buds of potato (Solanum tuberosum L.) cultivars culturedin vitro. J Expt Bot 44:381–386.CrossRefGoogle Scholar
  59. Lian Y, H Dong, L Jin, Y Ji, H Lin, Y Zou, Y Iian, HR Dong, LP Jin, YB Ji, H Lin, and Y Zou. 1998. Effect of inductive stimulus on the changes of endohormones during microtuber formationin vitro inSolanum tuberosum L. Adv Hort 2:494–498.Google Scholar
  60. Lillo C. 1989. A simple two-phase system for efficientin vitro tuberization in potato. Norwegian J Agr Sci 3:23–27.Google Scholar
  61. Lowe R. 1999.In vitro hardening, improved minituber production, and field performance of potato (Solanum tuberosum L) cv. Norland. MS Thesis. Faculty of Grad Studies & Res, McGill Univ.Google Scholar
  62. Maldonado LA, JE Wright, and GJ Scott. 1998. Constraints to potato production and use of potato in Asia. Am J Potato Res 75:71–79.Google Scholar
  63. McCown BH, and PJ Joyce. 1991. Automated propagation of microtubers of potato.In: IK Vasil (ed), Scale-up and Automation in Plant Propagation. Academic Press, San Diego. pp 95–110.Google Scholar
  64. McCown BH, and GA Wattimena. 1987. Field performance of micropropagated potato plants.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry. Springer-Verlag, Berlin. 3:80–88.Google Scholar
  65. McDonald JG. 1987. Comparative levels of potato viruses S and Y Infection of microplants and tuber-propagated plants in the field. Am Potato J 64:517–521.CrossRefGoogle Scholar
  66. Mes MG, and I Menge. 1954. Potato shoot and tuber culturesin vitro. Physiol Plant 7:637–649.CrossRefGoogle Scholar
  67. Molet D. 1991. L’utilisation des microtubercules. Resultats d’experimentations dans la Région Nord. La Pomme de Terre Française. 463:72–79.Google Scholar
  68. Murashige T, and F Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497.CrossRefGoogle Scholar
  69. Naik PS, and D Sarkar. 1997. Influence of light-induced greening on storage of potato microtubers. Biol Plant 39:31–34.CrossRefGoogle Scholar
  70. Naik PS, D Sarkar, and PC Gaur. 1998. Yield components of potato microtubers:in vitro production and field performance. Ann Appl Biol 113:91–99.CrossRefGoogle Scholar
  71. Nasiruddin KM, and J Blake. 1994. Production of potato microtubers with and without growth regulators.In: PJ Lumsden, JR Nicholas, WJ Davies (eds), Physiology, Growth and Development of Plants. Kluwer, Dordrecht. pp. 254–260.Google Scholar
  72. Niemira BA, R Hammerschmidt, and GR Safir. 1996. Postharvest suppression of potato dry rot (Fusarium sambucinum) in prenuclear minitubers by arbuscular mycorrhizal fungal inoculum. Am Potato J 73:509–515.CrossRefGoogle Scholar
  73. Niemira BA, GR Safir, R Hammerschmidt, and GW Bird. 1995. Production of prenuclear minitubers of potato with peat-based arbuscular mycorrhizal fungal inoculum. Agron J 87:942–946.Google Scholar
  74. Nowak J, and SK Asieudu. 1992. Gelling agent and light effects onin vitro tuberization of potato cultivars. Am Potato J 69:461–470.CrossRefGoogle Scholar
  75. Nowak J, S Bensalim, CD Smith, C Dunbar, SK Asiedu, A Madani, G Lazarovits, D Northcott, and AV Sturz. 1999. Behaviour of plant material issued fromin vitro tuberization. Potato Res 42:505–519.CrossRefGoogle Scholar
  76. Nowak J, and D Colborne. 1989.In vitro tuberization and tuber proteins as indicators of heat stress tolerance in potato. Am Potato J 66:35–45.CrossRefGoogle Scholar
  77. Ortiz-Montiel G, and H Lozoya-Saldana. 1987. Potato minitubers: technology validation in Mexico. Am Potato J 64:535–544.CrossRefGoogle Scholar
  78. Papathanasiou F, S Watson, and BMR Harvey. 1994. Effect of explant stem length on potato (Solanum tuberosum L.) microtuber formationin vitro.In: PJ Lumsden, JR Nicholas, WJ Davies (eds), Physiology, Growth and Development of Plants in Culture. Kluwer Academic Publishers, Boston. pp. 249–253.Google Scholar
  79. Percival GC, MS Karim, and GR Dixon. 1998. Light induced bio-control of potato storage pathogensin vitro. Potato Res 41:143–153.CrossRefGoogle Scholar
  80. Perl A, D Aviv, L Willmitzer, and E Galun. 1991.In vitro tuberization in transgenic potatoes harboringB-glucoronidase linked to a patatin promoter: Effect of sucrose levels and photoperiods. Plant Sci 73:87–95.CrossRefGoogle Scholar
  81. Ranalli P. 1997. Innovative propagation methods in seed tuber multiplication programmes. Potato Res 40:439–453.CrossRefGoogle Scholar
  82. Ranalli P, M Bizarri, L Borghi, and M Mari. 1994a Genotypic influence onin vitro induction, dormancy length, advancing age and agronomical performance of potato microtubers (Solanum tuberosum L.). Ann Appl Biol 125:161–172.CrossRefGoogle Scholar
  83. Ranalli P, F Bassi, G Ruaro, P Del Re, M Di Candilo, and G Mandolino. 1994b. Microtuber and minituber production and field performance compared with normal tubers. Potato Res 37:383–391.CrossRefGoogle Scholar
  84. Rasco SM, LF Patena, and RC Barba. 1995. “Basic seed” production in potato (Solanum tuberosum L.) cv. Banahaw and ASN 69.1. Scientific Meeting of the Federation of Crop Science Societies of the Philippines. Aklan (Philippines) 10–14 May 1993. Philippine J Crop Sci 18 (supp no.1):48.Google Scholar
  85. Rosell G, FG de Bertoldi, and R Tizio. 1987.In vitro mass tuberisation as a contribution to potato micropropagation. Potato Res 30:111–116.CrossRefGoogle Scholar
  86. Russo P, and SA Slack. 1998. Tissue culture methods for the screening and analysis of putative virus-resistant transgenic potato plants. Phytopathology 88:437–441.CrossRefPubMedGoogle Scholar
  87. Sarkar D, and PS Naik. 1998. Effect of inorganic nitrogen nutrition on cytokinin-induced potato microtuber productionin vitro. Potato Res 41:211–217.CrossRefGoogle Scholar
  88. Seabrook JEA, S Coleman, and D Levy. 1993. Effect of photoperiod onin vitro tuberization of potato (Solanum tuberosum L.). Plant Cell Tiss Org Cult 34:43–51.CrossRefGoogle Scholar
  89. Simko I. 1994. Sucrose application causes hormonal changes associated with potato tuber induction. J Plant Growth Reg 13:73–77.CrossRefGoogle Scholar
  90. Singh SV, R Chandra, RJ Singh, and PS Naik. 1994. Integration of potato microtuber technology in breeders’ seed production.In: GS Shekhawat, PSM Khurana, SK Pandey, VK Chandla (eds), Potato: Present and Future. Indian Potato Association, Shimla. pp. 29–304.Google Scholar
  91. Slimmon T, V Souza Machado, and R Coffin. 1989. The effect of light onin vitro microtuberization of potato cultivars. Am Potato J 66:843–848.CrossRefGoogle Scholar
  92. Stallknecht GF, and S Farnsworth. 1979. The effect of nitrogen on the coumarin-induced tuberization of potato axillary shoots culturedin vitro. Am Potato J 56:523–530.CrossRefGoogle Scholar
  93. Stecco de VL, and R Tizio, 1982. Action du CCC sur la tubérization des Germes de pomme de terres cultivésin vitro dans un milieu minéral dépourvu de sucre. C R Acad Sci Paris, t. 294, Serie HI. pp. 901–903.Google Scholar
  94. Struik PC, and SG Wiersema. 1999. Production of pre-basic seed.In: Seed Potato Technology. Wageningen Pers. pp. 173–216.Google Scholar
  95. Teisson C, and D Alvard. 1999.In vitro production of potato microtubers in liquid medium using temporary immersion. Potato Res 42:499–504.CrossRefGoogle Scholar
  96. Tovar P, R Estrada, L Schilde-Rentschler, and JH Dodds. 1985. Induction and use ofin vitro potato tubers. CIP Circular 13:1–5. International Pot Centre, Lima, Peru.Google Scholar
  97. Vecchio V, SG Ferraro, MT Pagano, and L Andrenelli. 1994. Effect of saccaharose and CCC [(2-chloroethyl) trimethylammonium chloride] onin vitro production of microtubers of potato cultivars (Solanum. tuberosum). Sementi-Elette 40:63–68.Google Scholar
  98. Veramendi J, LM Arregui, and AM Mingo-Castel. 1998. A simple method for medium-term conservation of potato germplasm. Plant Tiss Cult Biotech 4:183–188.Google Scholar
  99. Villafranca MJ, J Veramendi, V Sota, and AM Mingo-Castel. 1998. Effect of physiological age of mother tuber and number of subcultures onin vitro tuberization of potato (Solanum tuberosum L.). Plant Cell Rep 17:787–790.CrossRefGoogle Scholar
  100. Vreugdenhil D, P Bindels, P Reinhoud, J Klocek, and T Hendriks. 1994. Use of the growth retardant tetcyclacis for potato tuber formationin vitro. Plant Growth Reg 14:257–265.CrossRefGoogle Scholar
  101. Vreugdenhil D, Y Boogaard, RGF Visser, and SM de Bruijn 1998. Comparison of tuber and shoot formation fromin vitro cultured potato explants. Plant Cell Tiss Org Cult 53:197–204.CrossRefGoogle Scholar
  102. Wang P, and C Hu. 1982.In vitro mass tuberization and virus-free seedpotato production in Taiwan. Am Potato J 59:33–37.CrossRefGoogle Scholar
  103. Wattimena G.A. 1983. Micropropagation as an alternative technology for potato production in Indonesia. Ph.D. Thesis. University of Wisconsin-Madison.Google Scholar
  104. Wattimena G, B McCown, and G Weis. 1983. Comparative field performance of potatoes from microculture. Am Potato J 60:27–33.CrossRefGoogle Scholar
  105. Wiersema SG, R Cabello, P Tovar, and JH Dodds. 1987. Rapid seed multiplication by planting into beds micro tubers andin vitro plants. Potato Res 30:117–120.CrossRefGoogle Scholar
  106. Yoshihara T, EA Omer, H Koshino, S Sakamura, Y Kikuta, and Y Koda 1989. Structure of a tuber-inducing substance from potato leaves. Agric Biol Chem 53:2835–2837.Google Scholar
  107. Yu W-C, PJ Joyce, DC Cameron, and BH McCown. 2000. Sucrose utilization during potato microtuber growth in bioreactors. Plant Cell Rep 19:407–413.CrossRefGoogle Scholar
  108. Zarrabeitia A, X Lejarcegui, J Veramendi, and AM Mingo-Castel. 1997. Influence of nitrogen supply on micropropagation and subsequent microtuberization of four potato cultivars. Am Potato J 370:369–378.CrossRefGoogle Scholar
  109. Zhang Y, and DJ Donnelly. 1997.In vitro bioassays for salinity tolerance screening of potato. Potato Res 40:285–295.CrossRefGoogle Scholar
  110. Ziv M, and D Shemesh. 1996. Propagation and tuberization of potato bud clusters from bioreactor culture. In Vitro Cell Dev Biol Plant 32:31–36.CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Danielle J. Donnelly
    • 1
  • Warren K. Coleman
    • 2
  • Shirlyn E. Coleman
    • 3
  1. 1.Plant Science DepartmentMacdonald Campus of McGill UniversitySte. Anne de BellevueCanada
  2. 2.Agriculture and Agri-Food CanadaPotato Research CentreFrederictonCanada
  3. 3.New Brunswick Department of Agriculture, Fisheries and AquaculturePlant Propagation CentreFrederictonCanada

Personalised recommendations