Collagen, a common thread in extracellular matrix evolution

Trends In Collagen

Abstract

Among multicellular animals, collagen is probably one of the most constant extracellular proteins. Collagen fibrils are encountered in sponges. The organization of their genes suggests that they have not varied to a great extent during evolution. However, they are not present in all animals. Basement membrane collagen is certainly the only ubiquitous collagen.

The comparisons of collagen in lower animals suggest similarities with several collagen types of vertebrates. It is interesting to try to imagine the fundamental problems for which solutions based on collagen have been adopted. The first one isadhesion. Animals with poorly packed cells need a cement to be attached to the bottom of the sea. In sponges, this function has been fulfilled by microfibrils of spongin, a short-chain collagen. Later on, other organisms, such as mussels, have used a chimeric elastin-collagen protein to obtain both elasticity and strong attachment. The second important problem has been mechanical support, that is askeleton. Here again, spongin has been involved in sponges. The best is the solution combining vertebrate collagen fibrils and calcium phosphate. A third vital problem has beenprotection. It is achieved by different kinds of collagens in invertebrates and lower vertebrates. It could be suggested that in vertebrates, some of the non-fibrillar collagen types are involved in tissue micro- or macro-specialization.

Keywords

Collagen evolution extracellular matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prockop D J 1998Matrix Biol. 16 519CrossRefGoogle Scholar
  2. 2.
    Garrone R 1978Phylogenesis of connective tissue (Basel: Karger)Google Scholar
  3. 3.
    Ramachandran G N and Kartha G 1954Nature (London) 174 269CrossRefGoogle Scholar
  4. 4.
    Rich A and Crick F H C 1961J. Mol. Biol. 3 483CrossRefGoogle Scholar
  5. 5.
    Bella J, Eaton M, Brodsky B and Berman H M 1994Science 266 75CrossRefGoogle Scholar
  6. 6.
    Naito A, Tuzi S and Saitô H 1994Eur. J. Biochem. 224 729CrossRefGoogle Scholar
  7. 7.
    Kramer R Z, Vitagliano L, Bella J, Berisio R, Mazarella L, Brodsky B, Zagari A and Berman H M 1998J. Mol. Biol. 280 623CrossRefGoogle Scholar
  8. 8.
    van der Rest M and Garrone R 1991FASEB J. 5 2814Google Scholar
  9. 9.
    Brodsky B and Shah N K 1995FASEB J. 9 1537Google Scholar
  10. 10.
    Brodsky B and Ramshaw J A M 1997Matrix Biol. 15 545CrossRefGoogle Scholar
  11. 11.
    Garrone R 1998 InMolecular evolution: towards the origin of metazoa (ed.) W E G Müller (Berlin: Springer) pp. 119–139Google Scholar
  12. 12.
    Exposito J Y and Garrone R 1990Proc. Natl. Acad. Sci. USA 87 6669CrossRefGoogle Scholar
  13. 13.
    Exposito J Y, van der Rest M and Garrone R 1993J. Mol. Evol. 37 254CrossRefGoogle Scholar
  14. 14.
    Tillet E, Franc J M, Franc S and Garrone R 1996Comp. Biochem. Physiol. 113 239Google Scholar
  15. 15.
    Takahara K, Hoffman G G and Greenspan D S 1995Genomics 29 588CrossRefGoogle Scholar
  16. 16.
    Vuoristo M M, Pihlajamaa T, Vandenberg P, Prockop D J and Ala-Kokko L 1995J. Biol. Chem. 270 22873CrossRefGoogle Scholar
  17. 17.
    Boute N, Exposito J Y Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K and Garrone R 1996Biol. Cell 88 37CrossRefGoogle Scholar
  18. 18.
    Exposito J Y, Ouazana R and Garrone R 1990Eur. J. Biochem. 190 401CrossRefGoogle Scholar
  19. 19.
    Exposito J Y, Le Guellec D, Lu Q and Garrone R 1991J. Biol. Chem. 266 21923Google Scholar
  20. 20.
    Gross J, Sokal Z and Rougvie M 1956J. Histochem. Cytochem. 4 227Google Scholar
  21. 21.
    Smith M C M, Burns N, Sayers J R, Sorrell J A, Casjens S R and Hendrix R W 1998Science 279 1834Google Scholar
  22. 22.
    Ruoslahti E 1997Science 276 1345CrossRefGoogle Scholar
  23. 23.
    Aho S, Turakainen H, Onnela M L and Boedtker H 1993Proc. Natl. Acad. Sci. USA 90 7288CrossRefGoogle Scholar
  24. 24.
    Coyne K J, Qin X X and Waite J H 1997Science 277 1830CrossRefGoogle Scholar
  25. 25.
    Waite J H, Qin X X and Coyne K J 1998Matrix Biol. 17 93CrossRefGoogle Scholar
  26. 26.
    Lethias C, Exposito J Y and Garrone R 1997Eur. J. Biochem. 245 434CrossRefGoogle Scholar
  27. 27.
    Kurz E M, Holstein T W, Petri B M, Engel J and David C N 1991J. Cell Biol. 115 1159CrossRefGoogle Scholar
  28. 28.
    Holstein T W, Benoit M, Herder G V, Wanner G, David C N and Gaub H E 1994Science 265 402CrossRefGoogle Scholar
  29. 29.
    Kramer J MFASEB J. 8 329Google Scholar
  30. 30.
    Gaill F, Mann K, Wiedemann H, Engel J and Timpl R 1995J. Mol. Biol. 246 284CrossRefGoogle Scholar
  31. 31.
    Luong T T, Boutillon M M, Garrone R and Knight D P 1998Biochem. Biophys. Res. Commun. 250 657CrossRefGoogle Scholar
  32. 32.
    Sasaki T, Fukai N, Mann K, Göhring W, Olsen B R and Timpl R 1998EMBO J. 17 4249CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  1. 1.Institute of Biology and Chemistry of Proteins, CNRS UPR 412University Lyon 1Lyon CedexFrance

Personalised recommendations