Indian Journal of Clinical Biochemistry

, Volume 14, Issue 1, pp 59–90 | Cite as

Biochemical diagnosis of liver disease

  • Paul L. Wolf
Special Section on Current Concepts on Some Aspects of Clinical Chemistry


It is important that clinicians and laboratorians, including clinical chemists and pathologists, recognize and understand the clinical significance of abnormal liver function tests. The liver regulates many important metabolic functions. Hepatic injury is associated with distortion of these metabolic functions. Hepatic disease can be evaluated and diagnosed by determining serum concentrations of a number of serum analytes. Many serum analytes exist to assist in the biochemical diagnosis of liver disease. The focus of this paper is on the analytes which are associated with hepatic necrosis, cholestasis, defects in excretion and end stage hepatic disease which results in decreased synthetic function. The abnormalities of these serum analytes will be correlated with the important types of liver disease.

Key words

Liver function tests albumin bilirubin alkaline phosphatase and transaminases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tygstrup, N. (1990) Assessment of liver function: Principles and practice. J. Gastroenterol. Hepatol. 5, 468–682.PubMedCrossRefGoogle Scholar
  2. 2.
    Corless, J.K. and Middleton, H.M. III. (1983) Normal liver function: A basis for understanding hepatic disease. Arch. Intern. Med. 143, 2291–2294.PubMedCrossRefGoogle Scholar
  3. 3.
    Skrede, S., Solberg, H.E., Ritland, S., Blomhoff, J.P., Schrumpf, E., Elgjo, K. and Gjone, E. (1982) Diagnostic and prognostic value of laboratory tests assessed in a follow-up study of 200 patients with liver disease. Clin. Chem. 28, 1177–1181.PubMedGoogle Scholar
  4. 4.
    Reichling, J.J. and Kaplan, M.M. (1988) Clinical use of serum enzymes in liver disease. Dig. Dis. Sci. 33, 1601–1614.PubMedCrossRefGoogle Scholar
  5. 5.
    Killingsworth, L.M. (1979) Plasma protein patterns in health and disease. Crit. Rev. Clin. Lab. Sci. 11, 1–30.CrossRefGoogle Scholar
  6. 6.
    Peters, T. Jr. (1975) Serum albumin. In: The-plasma proteins Ed. F. Putman, Academic Press, New York, USA, 2nd. edn. Vol1. p. 133.Google Scholar
  7. 7.
    Pinnel, A.E. and Northam, B.E. (1978) New automated dye-binding method for serum albumin determination with bromcresol purple. Clin. Chem. 24, 80–86.Google Scholar
  8. 8.
    Blanchaert, M. (1980) Analysis of bilirubin and bilirubin mono-and di-conjugates. Biochem. J. 185, 115–128.Google Scholar
  9. 9.
    Doumas, B.T., Perry, B.W., Sasse, E.A and Straumfjord, J.V. Jr. (1973) Standardization in bilirubin assays: Evaluation of selected methods and stability of bilirubin solutions. Clin. Chem. 19, 984–993.PubMedGoogle Scholar
  10. 10.
    Lott, J.A. and Wolf, P.L. Alanine and aspartate aminotransferase (ALT and AST). In: Clin. Enzymol. Eds. Lott, J.A., Wolf, P.L., Yearbook Medical Publishers, Chicago, USA. 111–157.Google Scholar
  11. 11.
    Pantenghini, M., Malechiodi, A., Calarco M. and Bonora, R. (1984) Clinical and diagnostic significance of aspartate aminotransferase isoenzymes in sera of patients with liver diseases. J. Clin. Chem. Clin. Biochem. 22, 153–158.Google Scholar
  12. 12.
    DeRitis, F. and Cacciatora, L. (1983) Differential diagnosis of liver diseases. In: Clin. Hepatol. Eds. Csomos, G., Thaler, H., Springer-Verlag, Berlin, Germany. 16–28.Google Scholar
  13. 13.
    Nalpas, B., Vassault, A. and LeGuilon, A. (1984) Serum activity of mitochondrial aspartate aminotransferase; a sensitive marker of alocoholism with or without alcoholic hepatitis. Hepatology. 4, 893–896.PubMedGoogle Scholar
  14. 14.
    Schmidt, E. and Schmidt, F.W. (1990) Progress in the enzyme diagnosis of liver disease; reality or illusion? Clin. Biochem. 23, 375–382.PubMedCrossRefGoogle Scholar
  15. 15.
    Lott, J.A. and Landesman, P.W. (1984) The enzymology of skeletal muscle disorders. Crit. Rev. Clin. Lab. Sci. 20, 153–190.PubMedGoogle Scholar
  16. 16.
    Rosalki, S.B. (1989) Serum enzymes in disease of skeletal muscle. Clin. Lab. Med. 9, 767–781.PubMedGoogle Scholar
  17. 17.
    Wolf, P.L., Lott, J.A., Nitti, G.J. and Bookstein, R. (1987) Changes in serum enzymes, lactate and haptoglobin following acute physical stress in international class athletes. Clin. Biochem. 20, 73–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolf, P.L. (1994) Clinical significance of serum high-molecular-mass alkaline phosphatase, alkaline phosphatase-lipoprotein-x complex, and intestinal variant alkaline phosphatase. Jour. Clin. Lab. Anal. 81, 172–176.CrossRefGoogle Scholar
  19. 19.
    Wolf, P.L. (1990) High-molecular-weight alkaline phosphatase and alkaline phosphatase lipoprotein x complex in cholestasis and hepatic malignancy. Arch. Pathol. Lab. Med. 114, 577–579.PubMedGoogle Scholar
  20. 20.
    Van Hoof, V. and DeBroe, M.E. (1994) Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit. Rev. Clin. Lab. Sci. 31(3), 197–293.PubMedCrossRefGoogle Scholar
  21. 21.
    Wolf, P.L. (1978) Clinical significance of an increased or decreased serum alkaline phosphatase. Arch. Pathol. Lab. Med. 102, 497–501.PubMedGoogle Scholar
  22. 22.
    Birkett, D.J., Done, J., Neale, F.C. and Posen, S. (1966) Serum alkaline phosphatase in pregnancy; an immunological study. Br. Med. J. 1, 1210–1212.PubMedCrossRefGoogle Scholar
  23. 23.
    Siraganian, P.A., Mulvihill, J.J., Mulivor, R.A. and Miller, R.W. (1989) Benign familial hyperphosphatasemia. J. Am. Med. Assoc. 261, 1310–1312.CrossRefGoogle Scholar
  24. 24.
    Wolf, P.L. (1995) The significance of transient hyperphosphatasemia of infancy and childhood to the clinician and clinical pathologist. Arch. Pathol. Lab. Med. 119, 774–775.PubMedGoogle Scholar
  25. 25.
    Moss, D.W. (1982) Alkaline phosphatase isoenzymes. Clin. Chem. 28, 2007–2016.PubMedGoogle Scholar
  26. 26.
    Van Hoof, V.O., Lepoutre, L.G., Hoylaerts, M.F., Chevigne, R. and DeBroe, M.E. (1988) Improved agarose electrophoretic method for separating alkaline phosphatase isoenzymes in serum. Clin. Chem. 34, 1857–1862.PubMedGoogle Scholar
  27. 27.
    Rosalki, S.B., Foo, A.Y., Burlina, A., Prellwitz, W., Stieber, P., Neumeier, D., Klein, G., Poppe, W.A. and Bodenmuller, H. (1993) Multicentric evaluation of Iso-ALP test kit for measurement of bone alkaline phosphatase in serum and plasma. Clin. Chem. 39, 648–652.PubMedGoogle Scholar
  28. 28.
    Hill, C.S. and Wolfert, R.L. (1989) The preparation of monoclonal antibodies which react preferentially with human bone alkaline phosphatase and not liver alkaline phosphatase. Clin. Chim. Acta. 186, 315–320.CrossRefGoogle Scholar
  29. 29.
    Bradbeer, J.N., Zanelli, J.M., Lindsay, P.C., Pearson, J. and Reeve, J. (1992) Relationship between the location of osteoblastic alkaline phosphatase activity and bone formation in human iliac crest bone. J. Bone Min. Res. 7, 905–912.CrossRefGoogle Scholar
  30. 30.
    Moss, D.W. (1992) Changes in enzyme expression related to differentiation and regulatory factors: the acid phosphatase of osteoclasts and other macrophages. Clin. Chim. Acta. 209, 131–138.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Hoof, V.O., Van Oosterom, A.T., Lepoutre, L.G. and DeBroe, M.E. (1992) Alkaline phosphatase isoenzyme patterns in malignant disease. Clin. Chem. 38, 2546–2551.PubMedGoogle Scholar
  32. 32.
    Fishman, W.H., Inglis, N.R., Stolbach, L.L. and Krant, M.J. (1968) A serum alkaline phosphatase isoenzymes of human neoplastic cell origin. Cancer Res. 28, 150–154.PubMedGoogle Scholar
  33. 33.
    Nathanson, L. and Fishman, W. (1971) New observations on the Regan isoenzyme of alkaline phosphatase in cancer patients. Cancer 27, 1388–1397.PubMedCrossRefGoogle Scholar
  34. 34.
    Stolbach, L., Krant, M. and Fishman, W. (1969) Ectopic production of alkaline phosphatase isoenzyme in patients with cancer. New Engl. J. Med. 281, 757–762.PubMedGoogle Scholar
  35. 35.
    Hada, T., Higashino, K., Okochi, T. and Yamamura, Y. (1978) Kasahara-variant alkaline phosphatase in renal cell carcinoma. Clin. Chim. Acta. 89, 311–316.PubMedCrossRefGoogle Scholar
  36. 36.
    Tietz, N.W., Burtis, C.A., Duncan, P., Erwin, K., Petitclerc, C.J., Rinker, A.D., Shuey, D. and Zygowic, E.R. (1983) A reference m of gamma-glutamyl transferase. CRC Crit. Rev. Clin. Lab. Sci. 12, 1–58.Google Scholar
  37. 47.
    Burlina, A. (1978) Improved method of fractionating gamma-glutamyl transferase by electrophoresis on cellulose acetate. Clin. Chem. 24, 502–504.PubMedGoogle Scholar
  38. 48.
    Rosalki, S.B. and Rau, D. (1972) Serum gamma-glutamyl transpeptidase activity in alcoholism. Clin. Chim. Acta. 39, 41–47.PubMedCrossRefGoogle Scholar
  39. 49.
    Nemesanszky, E., Lott, J.A. and Arato, M. (1988) Changes in serum enzymes in moderate drinkers after an alcohol challenge. Clin. Chem. 34, 525–527.PubMedGoogle Scholar
  40. 50.
    Sacchetti, L., Castaldo, G. and Salvatore, F. (1988) The γ-glutamyltransferase isoenzyme pattern in serum as a signal discriminating between hepatobiliary diseases, including neoplasias. Clin. Chem. 34, 352–355.PubMedGoogle Scholar
  41. 51.
    Eriksen, J., Olsen, P.S. and Thomsen, A.C. (1984) Gamma-glutamyl-transpeptidase, aspartate aminotransferase, and erythrocyte mean corpuscular volume as indicators of alcohol consumption in liver disease. Scand. J. Gastroenterol. 19, 813–819.PubMedGoogle Scholar
  42. 52.
    Acheampong-Mensah, D. (1976) Activity of gamma-glutamyl-transpeptidase in serum of patients receiving anticonvulsant or anticoagulant therapy. Clim. Biochem. 9, 67–70.CrossRefGoogle Scholar
  43. 53.
    Rosalki, S.B., Tarlow, D. and Rau, D. (1971) Plasma gamma-glutamyl-transpeptidase elevation in patients receiving enzyme-inducing drugs. Lancet ii 376–377.CrossRefGoogle Scholar
  44. 54.
    Cullen, D.R. and Goldberg, D.M. (1976) The association between serum triglycerides and GGT activity in diabetes mellitus. Clin. Biochem. 9, 208–211.PubMedCrossRefGoogle Scholar
  45. 55.
    Humphries, B.A., Melnychuk, M., Donegan, E.J. and Snee, R.D. (1979) Automated enzymatic assay for plasma ammonia. Clin. Chem. 25, 26–30.PubMedGoogle Scholar
  46. 56.
    Mitchell, R.A., Partin, J.C., Partin, J.S. and Ram, M.L. (1985) Hepatic and encephalopathic components of Reye's syndrome: Factor analysis of admission data from 209 patients. Neurology. 35, 1236–1239.PubMedGoogle Scholar
  47. 57.
    Mondzac, A., Ehrlich, G.E. and Seegmiller, J.E., (1965) An enzymatic determination of ammonia in biological fluids. J. Lab. Clin. Med. 66, 526–531.PubMedGoogle Scholar
  48. 58.
    Shahangian, S., Ash, K.O., Wahlstrom, N.O. Jr., Warden, J.D., Saffle, J.R., Taylor, A. Jr. and Green, L.S. (1984) Creatine kinase and lactate dehydrogenase isoenzymes in serum of patients suffering burns, blunt trauma, or myocardial infarction. Clin. Chem. 30, 1332–1338.PubMedGoogle Scholar
  49. 59.
    Bruns, D.E., Savory, J. and Wills, M.R. (1984) More on “flipped” lactate dehydrogenase patterns in myocardial infarction. Clin. Chem. 30, 1881–1882.PubMedGoogle Scholar
  50. 60.
    Ketchum, C.H., Robinson, C.A., Hall, L.M. and Grizzle, W.E. (1984) Clinical significance and partial biochemical characterization of lactate dehydrogenase isoenzyme 6. Clin. Chem. 30, 46–49.PubMedGoogle Scholar
  51. 61.
    Wolf, P.L. (1985) Lactate dehydrogenase-6: A biochemical sign of serious hepatic circulatory disturbance. Arch. Intern. Med. 145: 1396–1397.PubMedCrossRefGoogle Scholar
  52. 62.
    Kato, S., Ishii, H., Kano, S., Horii, K. and Tsuchiya, M. (1984) Evidence that “lactate dehydrogenase isoenzyme 6” is in fact alcohol dehydrogenase. Clin. Chem. 30, 1585–1586.PubMedGoogle Scholar
  53. 63.
    Gambino, R. (1980) Wilson's disease, an early diagnosis is essential. Lab. Rep. Physic. 51–54.Google Scholar
  54. 64.
    Wolf, P.L., Ray, G. and Kaplan, H. (1979) Evaluation of copper oxidase (ceruloplasmin) and related tests in Hodgkin's disease. Clin. Biochem. 12, 202–204.PubMedCrossRefGoogle Scholar
  55. 65.
    Wolf, P.L. (1982) Ceruloplasmin: Methods and clinical use. CRC Crit. Rev. Lab. Sci. 17, 229–245Google Scholar
  56. 66.
    Wolf, P.L., Enlander, D., Dalziel, J. and Swanson, J. (1969) Green plasma in blood donors. New Eng. Jour. Med. 281, 205–206.Google Scholar
  57. 67.
    Wald, N.J. and Cuckle, H.S. (1982) Nomogram for estimating an individual's risk of having a fetus with open spina bifida. Br. J. Obstet. Gynaecol. 89, 598–604.PubMedGoogle Scholar
  58. 68.
    Wolf, P.L. (1996) In: Enzyme tests in body fluids other than blood and urine. Chapter 20 Amniotic Fluid in Enzyme Tests in Diagnosis. Moss, D.W. and Rosalki, S.B. Eds. Edwards Arnold Publisher, London, U.K. p 270–271.Google Scholar
  59. 69.
    Balistreri, W.F., Suchy, F.J., Farrell, M.K. and Heubi, J.E. (1981) Pathologic versus physiologic cholestasis: Elevated serum concentration of a secondary bile acid in the presence of hepatobiliary disease. J. Pediatr. 98, 399–402.PubMedCrossRefGoogle Scholar
  60. 70.
    Danielsson, H. and Sjovall, J. (1975) Bile acid metabolism. Ann. Rev. Biochem. 44, 233–253.PubMedCrossRefGoogle Scholar
  61. 71.
    Bean, P., Liegmann, K., Lovli, T., Westby, C. and Sundrehagen, E. (1997) Semiautomated procedures for evaluation of carbohydrate-deficient transferrin in the diagnosis of alcohol abuse. Clin. Chem. 43, 6983–6989.Google Scholar
  62. 72.
    Stibler, H. (1991) Carbohydrate-deficient transferrin in serum; a new marker of potentially harmful alcohol consumption reviewed. Clin. Chem. 37, 2029–2037.PubMedGoogle Scholar
  63. 73.
    Anton, R. and Bean, P. (1994) Two methods for measuring carbohydrate-deficient transferrin in inpatient alcoholics and healthy controls compared. Clin. Chem. 40, 364–368.PubMedGoogle Scholar
  64. 74.
    Doyle, K.M., Cluette-Brown, J.E., Dube, O.M., Bernhardt, T.G., Morse, C.R. and Laposata, M. (1996) J. Am. Med. Assoc. 176, 1152–1156.CrossRefGoogle Scholar
  65. 75.
    Doyle, K.M., Bird, D.A., al-Salihi, S., Hallag, Y., Cluete-Brown, J.E., Goss, K.A. and Laposata, M. (1994) Fatty acid ethyl esters are present in human serum after ethanol ingestion. J Lipid Res. 35, 428–437.PubMedGoogle Scholar
  66. 76.
    Betro, M.G. (1972) Significance of increased alkaline phosphatase and lactate dehydrogenase activities coincident with normal serum bilirubin. Clin. Chem. 18, 1429.Google Scholar

Copyright information

© Association of Clinical BIochemists of India 1999

Authors and Affiliations

  • Paul L. Wolf
    • 1
  1. 1.Department of PathologyUniversity of California and Veteran's Administration Medical CentersSan DiegoUSA

Personalised recommendations