Advertisement

The Botanical Review

, Volume 66, Issue 4, pp 441–647 | Cite as

The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae

Subclasses Magnoliidae, Ranunculidae, Caryophyllidae, Dilleniidae, Rosidae, Asteridae, and Lamiidae
  • Robert F. Thorne
Article

Abstract

This latest revision of my classification and geography of the Dicotyledons replaces my 1992 (Bot. Rev. [Lancaster] 58(3): 225–348) review and is necessitated by the plethora of new information that has become available about the classification of the Angiospermae, especially in the currently popular approaches of cladistic, particulate, and molecular taxonomy. This review attempts to bring up-to-date our knowledge of the dicotyledons, with emphasis on new information published in the last decade. Nearly 600 such recent books, monographs, and other botanical articles are cited in the introduction, listed primarily by the botanical discipline they represent, and in the explanation of the classification. More than 2,000 additional works are listed in the “Literature Cited” section. The numerous changes in the classification created by this new information are listed by subclass and superorder, with pertinent references. A new phylogenetic “shrub” replaces earlier versions and attempts to indicate visually relative sizes and relationships among the superorders, orders, and suborders, with all of these divided into 10 subclasses. One table includes a statistical summary of all known and generally accepted flowering-plant taxa: approximately 257,400 species in 13,678 genera, 389 subfamilies in 490 families, and 756 subfamilies and undivided families in 10 subclasses, 31 superorders, 73 orders, and 64 suborders of Angiospermae. Figures for the dicotyledons are 199,500 species in 10,900 genera, 307 subfamilies in 376 families, and 586 subfamilies and undivided families in 7 subclasses, 22 superorders, 49 orders, and 48 suborders. Three other tables summarize the known indigenous distribution of the families and subfamilies of dicotyledons around the world (the monocotyledons are treated elsewhere). The synopsis lists the dicotyledonous taxa from the subclass down to the subfamily (and in Asteraceae down to the tribe), with indications of the degree of confidence I place in the circumscription and placement of each category above the subfamily, the best available estimates of the number of genera and species for each category, and the known indigenous distribution of each subfamily and family. Table V lists the geographical abbreviations used in the synopsis. The extensive bibliography of pertinent literature on which I have based my decisions should be helpful to persons interested in the classification of the dicotyledons.

Resumen

Esta nueva revisión de mi clasificación y geografía de las dicotiledóneas reemplaza mi anterior revisión de 1992 (Bot. Rev. [Lancaster] 58(3):225-348). Esto es necesario debido a la enorme cantidad de nueva información acerca de la clasificación de las plantas con flores, derivada especialmente de las nuevas metodologías en taxonomía cladística, micromorfología, y datos moleculares. Esta revisión intenta actualizar nuestro conocimiento acerca de las dicotiledóneas con énfasis en la nueva información publicada en la última década. En la introducción y en la explicación de la clasificación, se citan alrededor de 600 trabajos botánicos recientes que incluyen libros, monografías, y artículos especializados, los cuales son listados de acuerdo a la disciplina botánica que representan. Además se citan más de 2,000 obras en la sección titulada “Literature Cited.” Los numerosos cambios originados por esta nueva información son listados por subclases y superórdenes, con sus referencias pertinentes. Un nuevo “arbusto” filético substituye las versiones recientes e intenta indicar visualmente las relaciones entre subclases, superórdenes, órdenes, y subórdenes, así como sus tamaños relativos. Se presenta una tabla con un resumen de las estadísticas de todos los taxa conocidos y comunmente aceptados de las plantas con flores: alrededor de 257,400 especies en 13,678 géneros, 389 subfamilias en 490 familias, y 756 subfamilias con familias no subdivididasen 10 subclases, 31 superórdenes, 73 órdenes, y 64 subórdenes de Angiospermas. Las figuras proporcionadas corresponden a 199,500 especies de dicotiledóneas en 10,900 góneros, 307 subfamilias en 376 familias, y 586 subfamilias y familias no subdividadas en 7 subclases, 22 superórdenes, 49 órdenes, y 48 subórdenes. Otras tres tablas que se presentan en el trabajo muestran la distribución autóctona de familias y subfamilias de las dicotiledóneas del mundo (las monocotiledóneas son tratadas aparte). Esta sinopsis lista los taxa incluidos en las dicotiledóneas desde subclase hasta subfamilia (en Asteraceae hasta tribu), indicando el grado de confianza que designé para la circunscripción y la localización de cada categoría superior a la de subfamilia. Así mismo incluyo las mejores estimaciones disponibles acerca del número de géneros y especies para cada categoría y la distribución geográfica conocida de cada subfamilia y familia. La tabla V lista alfabeticamente las abreviaciones geográficas usadas en esta sinopsis. La extensa revisión bibliografía reciente incluída en este trabajo, y en la cual basé mis decisiones, puede ser de utilidad para todo interasado en la clasificación de las plantas con flores.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abbe, E. C. 1935–1938. Studies in the phylogeny of the Betulaceae. Bot. Gaz. 97: 1–67; 99: 431–469.CrossRefGoogle Scholar
  2. Abdallah, M. S. & H. C. D. de Wit. 1967,1978. The Resedaceae: A taxonomic revision of the family. Belmontia, n.s., 8(26A & B): 1–416.Google Scholar
  3. Abid, M. A. 1967. A revision ofSymphorema (Verbenaceae). Gard. Bull. Singapore 22: 153–171.Google Scholar
  4. Ablett, E. M., Playford, D. &S. Mills. 1997. The use of rubisco DNA sequences to examine the systematic position ofHernandia albiflora (C. T. White) Kubitzki (Hernandiaceae), and relationships among the Laurales. Austrobaileya 4: 601–607.Google Scholar
  5. Abu-Asab, M. S. &P. D. Cantino. 1989. Pollen morphology ofTrichostema (Labiatae) and its systematic implications. Syst. Bot. 14: 359–369.CrossRefGoogle Scholar
  6. ——. 1992. Pollen morphology in subfamily Lamioideae (Labiatae) and its phylogenetic implications. Pp. 97–112in R. M. Harley & T. Reynolds (eds.), Advances in labiate science. Royal Botanic Gardens, Kew.Google Scholar
  7. ——. 1993a. Phylogenetic implications of pollen morphology in tribe Ajugeae (Labiatae). Syst. Bot. 18: 100–122.CrossRefGoogle Scholar
  8. ——. 1993b. Systematic implications of pollen morphology in tribe Prostanthereae (Labiatae). Syst. Bot. 18: 563–574.CrossRefGoogle Scholar
  9. ——. 1994. Systematic implications of pollen morphology in subfamilies Lamioideae and Pogostemonoideae (Labiatae). Ann. Missouri Bot. Gard. 81: 653–686.CrossRefGoogle Scholar
  10. ——,J. W. Nowicke &T. Sang. 1993. Systematic implications of pollen morphology inCaryopteris (Labiatae). Syst. Bot. 18: 502–515.CrossRefGoogle Scholar
  11. Ackery, P. R. 1988. Hostplants and classification: A review of nymphalid butterflies. J. Linn. Soc., Biol. 33: 95–203.CrossRefGoogle Scholar
  12. —. 1991. Hostplant utilization by African and Australian butterflies. J. Linn. Soc., Biol. 44: 335–351.CrossRefGoogle Scholar
  13. Adams, R. M., II &G. W. Smith. 1977. An S.E.M. survey of the five carnivorous pitcher plant genera. Amer. J. Bot. 64: 265–272.CrossRefGoogle Scholar
  14. Adema, F., P. W. Leenhouts &P. C. van Weizen. 1994. Sapindaceae. Fl. Males., 1,11: 419–768.Google Scholar
  15. Ahmad, K. J. 1974. Cuticular studies in some species ofMendoncia andThunbergia (Acanthaceae). J. Linn. Soc., Bot. 69: 53–63.Google Scholar
  16. Ahrendt, L. W. A. 1961.Berberis andMahonia. A taxonomic revision. J. Linn. Soc., Bot. 57: 1–410.Google Scholar
  17. Airy Shaw, H. K. 1952. On the Dioncophyllaceae, a remarkable new family of flowering plants. Kew Bull. 1951: 327–347.Google Scholar
  18. —. 1965. Diagnoses of new families, new names, etc., for the seventh edition of Willis’s “Dictionary.” Kew Bull. 18: 249–273.CrossRefGoogle Scholar
  19. —. 1972. A new species ofMelanophylla Baker (Melanophyllaceae). Kew Bull. 26: 491–493.CrossRefGoogle Scholar
  20. — (revisor). 1985. J. C. Willis’ A dictionary of the flowering plants & ferns. Ed. 8. Cambridge Univ. Press, Cambridge, England.Google Scholar
  21. Albach, D. C., P. S. Soltis, D. E. Soltis &R. G. Olmstead. 1998. Phylogenetic analysis of the Asteridaes.l. based on sequences of 4 genes. Amer. J. Bot. 85: 111–112 (abstract).Google Scholar
  22. Albert, V. A. &D. W. Stevenson. 1996. Morphological cladistics of the Nepenthales. Amer. J. Bot. 83(6): 135 (abstract).Google Scholar
  23. — &K. Struwe. 1996. Morphological cladistics of Gentianaceae, III. Phylogeny and biogeography of the saprophytic tribe Voyrieae. Amer. J. Bot. 83(6): 135–136 (abstract).Google Scholar
  24. —,S. E. Williams &M. W. Chase. 1992. Carnivorous plants: Phylogeny and structural evolution. Science 257: 1491–1495.PubMedCrossRefGoogle Scholar
  25. Alice, L. A. &C. S. Campbell. 1996. A phylogeny ofRubus (Rosaceae: Rosoideae) based on internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Amer. J. Bot. 83(6): 136 (abstract).Google Scholar
  26. Almeda, F. 1997. Chromosomal observations on the Alzateaceae (Myrtales). Ann. Missouri Bot. Gard. 84: 305–308.CrossRefGoogle Scholar
  27. Al-Nowaihi, A. S., S. F. Khalifa &K. Hamed. 1987. A contribution to the taxonomy of Boraginaceae. Phytologia 62: 107–125.Google Scholar
  28. Al-Shammary, K. I. A. &R. J. Gornall. 1994. Trichome anatomy of the Saxifragaceaes.l. from the Southern Hemisphere. J. Linn. Soc., Bot. 114: 99–131.CrossRefGoogle Scholar
  29. Al-Shebaz, I. A. 1991. The genera of Boraginaceae in the southeastern United States. J. Arnold Arbor. Suppl. Ser. 1:1-169.Google Scholar
  30. Alston, R. E. &B. L. Turner. 1963. Biochemical systematics. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  31. Alverson, W. S., K. G. Karol, D. A. Baum, M. W. Chase, S. M. Swensen, R. McCourt } &K. J. Sytsma. 1998. Circumscription of the Malvales and relationships to other Rosidae: Evidence fromrbcL sequence data. Amer. J. Bot. 85: 876–887.CrossRefGoogle Scholar
  32. —,B. A. Whitlock, R. Nyffeler, C. Bayer } &D. A. Baum. 1999. Phylogeny of the core Malvales: Evidence fromndhF sequence data. Amer. J. Bot. 86: 1474–1486.CrossRefGoogle Scholar
  33. Amaral, M. C. E. 1991. Phylogenetische Systematik der Ochnaceae. Bot. Jahrb. Syst. 113: 105–196 (in Gentian; summary in English).Google Scholar
  34. Anderberg, A. A. 1991. Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot. 104: 5–195.Google Scholar
  35. —. 1992. The circumscription of the Ericales and their cladistic relationships to other families of higher dicotyledons. Syst. Bot. 17: 660–675.CrossRefGoogle Scholar
  36. —. 1994. Phylogeny of the Empetraceae, with special emphasis on character evolution in the genusEmpetrum. Syst. Bot. 19: 35–46.CrossRefGoogle Scholar
  37. — &B. Ståhl. 1995. Phylogenetic interrelationships in the order Primulales, with special emphasis on the family circumscriptions. Canad. J. Bot. 73: 1699–1730.Google Scholar
  38. —,I. Trift } &M. Källersjö. 1997. On the systematic position of the genusCoris (Primulaceae). Nord. J. Bot. 18: 203–207.Google Scholar
  39. —,B. Ståhl &M. Källersjö. 1998. Phylogenetic relationships in the Primulales inferred fromrbcL sequence data. Pl. Syst. & Evol. 211: 93–102.CrossRefGoogle Scholar
  40. ——, &M. Källersjö. 2000. Maesaceae, a new primuloid family in the order Ericaless.l. Taxon 49: 183–187.CrossRefGoogle Scholar
  41. Anderson, W. R. 1978. Byrsonimoideae, a new subfamily of the Malpighiaceae. Leandra 7: 5–18.Google Scholar
  42. —. 1990. The origin of the Malpighiaceae—The evidence from morphology. Mem. New York Bot. Gard. 64: 210–224.Google Scholar
  43. Andersson, L. &J. H. E. Rova. 1998. Thereps16 intron and the phylogeny of the Rubioideae (Rubiaceae). Pl. Syst. & Evol. 214: 161–186.CrossRefGoogle Scholar
  44. Andreasen, K. & B. Bremer. 1996. Phylogeny of the subfamily Ixoroideae (Rubiaceae). Pp. 119–138in E. Robbrecht, C. Puff & E. Smets (eds.), Second International Rubiaceae Conference proceedings. Opera botanica Belgica, 7. National Botanic Garden of Belgium, Meise.Google Scholar
  45. —,B. G. Baldwin &B. Bremer. 1999. Phylogenetic utility of the nuclear rDNA ITS region in subfamily Ixoroideae (Rubiaceae): Comparisons with cpDNArbcL sequence data. Pl. Syst. & Evol. 217: 119–135.CrossRefGoogle Scholar
  46. Andronova, N. N. 1988. Comparative embryology of Loganiaceae and Rubiaceae. Bot. Zhurn. (Moscow & Leningrad) 73: 937–951 (in Russian; summary in English).Google Scholar
  47. Anuradha, S. M. J., M. Radhakrisnaiah &L. L. Narayana. 1988. Chemosystematics of Capparaceae. Feddes Repert. 99: 391–394.Google Scholar
  48. APG [Angiosperm Phylogeny Group]. 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85(4): 531–553.CrossRefGoogle Scholar
  49. Applequist, W. L. &R. S. Wallace. 1997. Phylogeny of the Madagascan endemic family Didiereaceae. Amer. J. Bot. 84(6): 173 (abstract).Google Scholar
  50. Archangelsky, S. &T. N. Taylor. 1993. The ultrastructure of in situClavatipollenites pollen from the Early Cretaceous of Patagonia. Amer. J. Bot. 80: 879–885.CrossRefGoogle Scholar
  51. Argue, C. L. 1993. Pollen morphology in the Selagineae, Manuleae (Scrophulariaceae), and selected Globulariaceae, and its taxonomic significance. Amer. J. Bot. 80: 723–733.CrossRefGoogle Scholar
  52. Argus, G. W. 1997. Infrageneric classification ofSalix (Salicaceae) in the New World. Syst. Bot. Monogr., 52. Amer. Soc. Pl. Tax., Ann Arbor, MI.Google Scholar
  53. Armstrong, J. E. 1985. The delimitation of Bignoniaceae and Scrophulariaceae based on floral anatomy, and the placement of problem genera. Amer. J. Bot. 72: 755–766.CrossRefGoogle Scholar
  54. Ashton, P. S. 1979. Phylogenetic speculations on Dipterocarpaceae. Mem. Mus. Natl. Hist. Nat., Ser. B., Bot. 26: 145–149.Google Scholar
  55. —1982. Dipterocarpaceae. Fl. Males. 9: 237–552.Google Scholar
  56. Averett, J. E. &S. A. Graham. 1984. Flavonoids of Rhynchocalycaceae (Myrtales). Ann. Missouri Bot. Gard. 71: 853–854.CrossRefGoogle Scholar
  57. Axelius, B. 1996. The phylogenetic relationships of the physaloid genera (Solanaceae) based on morphological data. Amer. J. Bot. 83: 118–124.CrossRefGoogle Scholar
  58. Baas, P. 1972. Anatomical contributions to plant taxonomy, II. The affinities ofHua Pierre andAfrostyrax Perkins et Gilg. Blumea 20: 161–192.Google Scholar
  59. —. 1973. The wood anatomical range inIlex (Aquifoliaceae) and its ecological and phylogenetic significance. Blumea 21: 193–298.Google Scholar
  60. —. 1974. Stomatal types in Icacinaceae: Additional observations of genera outside Malesia. Acta Bot. Neerl. 23: 193–200.Google Scholar
  61. —. 1975. Vegetative anatomy and the affinities of Aquifoliaceae,Sphenostemon, Phelline, andOncotheca. Blumea 22: 311–407.Google Scholar
  62. —. 1979. The anatomy ofAlzatea Ruiz & Pav. (Myrtales). Acta Bot. Neerl. 28: 156–158.Google Scholar
  63. —. 1981. A note on stomatal types and crystals in the leaves of Melastomataceae. Blumea 27: 475–479.Google Scholar
  64. —. 1984. Vegetative anatomy and the taxonomic status ofIlex collina andNemopanthus (Aquifoliaceae). J. Arnold Arbor. 65: 243–250.Google Scholar
  65. —. 1997. Vegetative anatomy of Boraginaceae. Fl. Males., I, 13: 46–48.Google Scholar
  66. — &R. C. V. J. Zweypfenning. 1979. Wood anatomy of the Lythraceae. Acta Bot. Neerl. 28: 117–155.Google Scholar
  67. —,R. Geesink, W. A. Van Heel &J. Muller. 1979. The affinities ofPlagiopteron suaveolens Grifft. (Plagiopteraceae). Grana 18: 69–89.Google Scholar
  68. —,E. van Oosterhoud &J. L. Scholtes. 1982. Leaf anatomy and classification of the Olacaceae,Octoknema, andErythropalum. Allertonia 3: 155–210.Google Scholar
  69. —,P. M. Esser, M. E. T. van der Westen &M. Zandee. 1988. Wood anatomy of the Oleaceae. IAWA Bull., n.s., 9(2): 103–182.Google Scholar
  70. Backlund, A. 1996. Phylogeny of the Dipsacales. Compr. Summ. Uppsala Diss. Fac. Sc. Tech. 24(3): 33+16+27+79+13.Google Scholar
  71. — &B. Bremer. 1997. Phylogeny of the Asteridaes.str. based onrbcL sequences, with particular reference to the Dipsacales. Pl. Syst. & Evol. 207: 225–254.CrossRefGoogle Scholar
  72. —— &B. Bremer. 1998. To be or not to be: Principles of classification and monotypic plant families. Taxon 47: 391–400.CrossRefGoogle Scholar
  73. — &S. Nilsson. 1997. Pollen morphology and the systematic position ofTriplostegia (Dipsacales). Taxon 46: 21–31.CrossRefGoogle Scholar
  74. Badillo, V. M. 1971. Monografía de la familia Caricaceae. Publ. Asoc. Prof., Univ. Central de Venezuela, Maracay.Google Scholar
  75. Bailey, I. W. 1933. Structure, distribution and diagnostic significance of vestured pits in dicotyledons. J. Arnold Arbor. 14: 259–273.Google Scholar
  76. —. 1944. The comparative morphology of the Winteraceae, III. Wood. J. Arnold Arbor. 25: 97–103.Google Scholar
  77. —. 1951. The use and abuse of anatomical data in the study of phylogeny and classification. Phytomorphology 1: 67–69.Google Scholar
  78. —. 1956. Nodal anatomy in retrospect. J. Arnold Arbor. 37: 269–287.Google Scholar
  79. —. 1957. Additional notes on the vesselless dicotyledon,Amborella trichopoda Baill. J. Arnold Arbor. 38: 374–380.Google Scholar
  80. — &R. A. Howard. 1941. The comparative morphology of the Icacinaceae, I-IV. J. Arnold Arbor. 22: 125–132, 171–187,432-442,556-568.Google Scholar
  81. — &C. G. Nast. 1943–1945a. The comparative morphology of the Winteraceae. Respective parts published in J. Arnold Arbor. as follows: I. Pollen and stamens, 24: 340–346; II. Carpels, 24: 472–481; IV. Anatomy of the node and vascularization of the leaf, 25: 215–221; V. Foliar epidermis and sclerenchyma, 25: 342–348; VII. Summary and conclusions, 26: 37–47.Google Scholar
  82. —— &C. G. Nast. 1945b. Morphology and relationships ofTrochodendron andTetracentron. J. Arnold Arbor. 26: 143–154.Google Scholar
  83. —— &C. G. Nast. 1948. Morphology and relationships ofIllicium, Schisandra andKadsura, I. Stem and leaf. J. Arnold Arbor. 29: 77–89.Google Scholar
  84. — &A. C. Smith. 1942. Degeneriaceae, a new family of flowering plants from Fiji. J. Arnold Arbor. 23: 356–365.Google Scholar
  85. — &B. G. L. Swamy. 1948.Amborella trichopoda Baill., a new morphological type of vesselless dicotyledon. J. Arnold Arbor. 29: 245–254.Google Scholar
  86. —— &B. G. L. Swamy. 1949. The morphology and relationships ofAustrobaileya. J. Arnold Arbor. 30: 211–226.Google Scholar
  87. —— &B. G. L. Swamy. 1951. The conduplicate carpel of dicotyledons and its initial trends of specialization. Amer. J. Bot. 38: 373–379.CrossRefGoogle Scholar
  88. —,C. G. Nast &A. C. Smith. 1943. The family Himantandraceae. J. Arnold Arbor. 24: 190–206.Google Scholar
  89. Baillon, B. M. 1866–1895. Histoire des plantes. 13 vols. Paris.Google Scholar
  90. Baker, H. G. &I. Baker. 1979. Starch in angiosperm pollen grains and its evolutionary significance. Amer. J. Bot. 66: 591–600.CrossRefGoogle Scholar
  91. Bakker, F. T., D. D. Vassiliades &C. Morton. 1998. Phylogenetic relationships ofBiebersteinia Stephan (Geraniaceae) inferred fromrbcL andatpB sequence comparisons. J. Linn. Soc., Bot. 127: 149–158.CrossRefGoogle Scholar
  92. Balgooy, M. M. J. van. 1971. Plant-geography of the Pacific. Blumea 6 (Suppl.): 1–222.Google Scholar
  93. —. 1993. Pacific plant areas. Rijksherbarium, Leiden, Netherlands.Google Scholar
  94. Balthazar, M. von &P. K. Endress. 1999. Floral bract function, flowering process and breeding systems ofSarcandra andChloranthus (Chloranthaceae). Pl. Syst. & Evol. 218: 161–178.CrossRefGoogle Scholar
  95. Bancroft, H. 1935. The wood anatomy of representative members of the Monotoideae. Amer. J. Bot. 22: 717–739.CrossRefGoogle Scholar
  96. Bange, C. C. J. 1952. A new family of dicotyledons: Davidsoniaceae. Blumea 1: 293–296.Google Scholar
  97. Baranova, M. 1972. Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families. Taxon 21: 447–469.CrossRefGoogle Scholar
  98. —. 1983. On the laterocytic stomatotype in angiosperms. Brittonia 35: 93–102.CrossRefGoogle Scholar
  99. —. 1987. Historical development of the present classification of morphological types of stomates. Bot. Rev. (Lancaster) 53(1): 53–79.CrossRefGoogle Scholar
  100. —. 1992a. The epidermal structures and systematic position of the Austrobaileyaceae. Bot. Zhum. (Moscow & Leningrad) 77(6): 1–17 (in Russian; summary in English).Google Scholar
  101. —. 1992b. Principles of comparative stomatographic studies of flowering plants. Bot. Rev. (Lancaster) 58(1): 49–99.CrossRefGoogle Scholar
  102. Barker, W. R. 1984. Stackhousiaceae. Fl. Austral. 22: 186–199.Google Scholar
  103. Barlow, B. A. 1964. Classification of the Loranthaceae and Viscaceae. Proc. Linn. Soc. N.S.W., 2d ser., 89: 268–272.Google Scholar
  104. —. 1983. Biogeography of Loranthaceae and Viscaceae. Pp. 19–46in D. M. Calder & P. Bernhardt (eds.), The biology of mistletoes. Academic Press, New York.Google Scholar
  105. —. 1997. Loranthaceae, Viscaceae. Fl. Males., I, 13: 209–401,403-442.Google Scholar
  106. — &D. Wiens 1971. The cytogeography of the loranthaceous mistletoes. Taxon 20: 291–312.CrossRefGoogle Scholar
  107. Barthlott, W. 1984. Microstructural features of seed surfaces. Pp. 95–105in V. H. Heywood & D. M. Moore (eds.), Current concepts in plant taxonomy. Academic Press, London.Google Scholar
  108. —. 1988. Ober de systematischen Gliederungen der Cactaceae. Beitr. Biol. Pflanzen 63: 17–40.Google Scholar
  109. —. 1989. Cuticular surfaces in plants. Progr. Bot. 51: 48–53.Google Scholar
  110. —. 1990. Scanning electron microscopy of the epidermal surface in plants. Pp. 69–94in D. Claugher (ed.), Scanning electron microscopy in taxonomy and functional morphology. Clarendon Press, Oxford.Google Scholar
  111. —. 1994. Epicuticular wax ultrastructure and systematics. Pp. 75–86in H.-D. Behnke & T. J. Mabry (eds.), Caryophyllales: Evolution and systematics. Springer-Verlag, Berlin.Google Scholar
  112. — &D. R. Hunt. 1993. Cactaceae. Pp. 161–197in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  113. -Barthlott, W.& I. Theisen. 1995. Epicuticular wax ultrastructure and classification of Ranunculiflorae.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 39–45. Springer-Verlag, Vienna, New York.Google Scholar
  114. — &E. Wollenweber. 1981. Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ahnlicher Sekrete. Trop. Subtrop. Pflanzenwelt 32: 7–64.Google Scholar
  115. —,C. Neinhuis, R. Jetter, T. Bourauel &M. Riederer. 1996. Waterlily, poppy, or sycamore: On the systematic position ofNelumbo. Flora 191: 169–174.Google Scholar
  116. ——,C. Neinhuis, I. Theisen &F. Ditsch. 1998. Epicuticular wax micromorphology and angiosperm classification. Amer. J. Bot. 85: 170 (abstract).Google Scholar
  117. Basak, R. K. &K. Subramanyam. 1966. Pollen grains of some species ofNepenthes. Phytomorphology 16: 334–338.Google Scholar
  118. Basinger, J. F. &D. L. Dilcher. 1984. Ancient bisexual flowers. Science 224: 511–513.PubMedCrossRefGoogle Scholar
  119. Baskin, C. C. &J. M. Baskin. 1998. Seeds, ecology, biogeography, and evolution of dormancy and germination. Academic Press, New York.Google Scholar
  120. Bassett, I. J. 1973. The plantains of Canada. Canad. Dept. Agric. Monogr. 7. Ottawa: Information Division, Canada Dept. of Agriculture.Google Scholar
  121. Bates, D. M., R. W. Robinson &C. Jeffrey (eds.). 1990. Biology and utilization of the Cucurbitaceae. Cornell Univ. Press, Ithaca, NY.Google Scholar
  122. Bate-Smith, E. C. 1962. The phenolic constituents of plants and their taxonomic significance, I. Dicotyledons. J. Linn. Soc., Bot. 58: 95–173.Google Scholar
  123. —. 1973. Chemotaxonomy ofGeranium. J. Linn. Soc., Bot. 67: 347–359.Google Scholar
  124. —. 1974. Systematic distribution of ellagitannins in relation to the phylogeny and classification of the angiosperms. Pp. 93–102in G. Bendz & J. Santesson (eds.), Chemistry in botanical classification. Nobel Found., Stockholm.Google Scholar
  125. —,I. K. Ferguson, K. Hutson, S. R. Jensen, B. J. Nielsen &T. Swain. 1975. Phytochemical interrelationships in the Cornaceae. Biochem. Syst. Ecol. 3: 79–89.CrossRefGoogle Scholar
  126. Baum, B. R. 1966. Monographic revision of the genusTamarix. Hebrew Univ., Jerusalem.Google Scholar
  127. —,I. J. Bassett &C. W. Crompton. 1971. Pollen morphology ofTamarix species and its relationship to the taxonomy of the genus. Pollen & Spores 13: 495–521.Google Scholar
  128. Baum, D. A. &K. Oginuma. 1994. A review of chromosome numbers in Bombacaceae with new counts forAdansonia. Taxon 43: 11–20.CrossRefGoogle Scholar
  129. — &K. J. Sytsma. 1995. Phylogenetic analysis of Onagraceae based on sequences of ITS and 5.8S nuclear ribosomal DNA. Amer. J. Bot. 82(6): 114 (abstract).Google Scholar
  130. Baumann, M. G. 1946.Myodocarpus und die Phylogenie der Umbelliferen-Frücht. Ber. Schweiz. Bot. Ges. 56: 13–112.Google Scholar
  131. Baumann-Bodenheim, M. G. 1955. Ableitung und Bau bicarpellatmonospermer und pseudomonocarpellater Araliaceen- und Umbelliferen-Frücte. Ber. Schweiz. Bot. Ges. 65: 481–510.Google Scholar
  132. Bausch, J. 1938. A revision of the Eucryphiaceae. Kew Bull. 1938: 317–349.Google Scholar
  133. Bayer, C. 1998a. Synflorescences of Malvaceae. Nord. J. Bot. 18: 335–338.Google Scholar
  134. —. 1998b. The bicolor unit-homology and transformation of an inflorescence structure unique to core Malvales. Pl. Syst. & Evol. 214: 187–198.CrossRefGoogle Scholar
  135. —,M. W. Chase &M. F. Fay. 1998a. Muntingiaceae, a new family of dicotyledons with malvalean affinities. Taxon 47: 37–42.CrossRefGoogle Scholar
  136. —,M. F. Fay, A. Y. deBruijn &M. W. Chase. 1998b. Molecular systematics of Malvales. Amer. J. Bot. 85(6): 115 (abstract).Google Scholar
  137. Bayer, R. J. &J. R. Starr. 1998. Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, thetrnL intron andtrnL/trnF intergene spacer. Ann. Missouri Bot. Gard. 85: 242–256.CrossRefGoogle Scholar
  138. —,L. Hufford &D. E. Soltis. 1996. Phylogenetic relationships in Sarraceniaceae based onrbcL and ITS sequences. Syst. Bot. 21: 121–134.CrossRefGoogle Scholar
  139. Beal, E. O. 1956. Taxonomic revision of the genusNuphar Sm. of North America and Europe. J. Elisha Mitchell Sci. Soc. 72: 317–346.Google Scholar
  140. Beaufort-Murphy, H. T. 1983. The seed surface morphology of the Gesneriaceae utilizing the scanning electron microscope and a new system for diagnosing seed morphology. Selbyana 6: 220–422.Google Scholar
  141. Beauvisage, L. 1920. Contribution à l’étude anatomique de la famille des Ternstroemiacées. Tours, France.Google Scholar
  142. Beckstrom-Sternberg, S. M. 1988. Molecular systematics of the Centrospermae: Studies using two-dimensional gel electrophoresis. Ph.D. diss, Claremont Grad. School, Claremont, CA.Google Scholar
  143. Bedell, H. G. 1980. A taxonomic and morphological re-evaluation of Stegnospermaceae (Caryophyllales). Syst. Bot. 5: 419–431.CrossRefGoogle Scholar
  144. Behnke, H. D. 1971. Sieve-tube plastids of Magnoliidae and Ranunculidae in relation to systematics. Taxon 20: 723–730.CrossRefGoogle Scholar
  145. —. 1972. Sieve-tube plastids in relation to angiosperm systematics: An attempt towards a classification by ultrastructural analysis. Bot. Rev. (Lancaster) 38: 155–197.CrossRefGoogle Scholar
  146. —. 1973. Sieve-tube plastids of Hamamelididae: Electron microscopic investigations with special reference to Urticales. Taxon 22: 205–210.CrossRefGoogle Scholar
  147. —. 1974a. Elektronenmikroskopische Untersuchungen an Siebröhren-Plastiden und ihre Aussage über die systematische Stellung vonLophiocarpus. Bot. Jahrb. Syst. 94: 114–119.Google Scholar
  148. —. 1974b. P- und S-Typ Siebelement-Plastiden bei Rhamnales. Beitr. Biol. Pflanzen 50: 457–464.Google Scholar
  149. —. 1975a.Hectorella caespitosa: Ultrastructural evidence against its inclusion into Caryophyllaceae. Pl. Syst. & Evol. 124: 31–34.CrossRefGoogle Scholar
  150. —. 1975b. P-type sieve-element plastids: A correlative ultrastructural and ultrahistochemical study on the diversity and uniformity of a new reliable character in seed plant systematics. Protoplasma 83: 91–101.CrossRefGoogle Scholar
  151. —. 1975c. Elektronenmikroskopische Untersuchungen zur Frage der verwandtschaftlichen Beziehungen zwischenTheligonum und Rubiaceae: Feinbau der Siebelement-Plastiden und Anmerkungen zur Strucktur der Pollenexine. Pl. Syst. & Evol. 123: 317–326.CrossRefGoogle Scholar
  152. —. 1976a. The bases of angiosperm phylogeny: Ultrastructure. Ann. Missouri Bot. Gard. 62: 647–663.CrossRefGoogle Scholar
  153. —. 1976b. Die Siebelement-Plastiden der Caryophyllaceae, eine weitere spezifische Form der P-Typ Piastiden bei Centrospermen. Bot. Jahrb. Syst. 95: 327–333.Google Scholar
  154. —. 1976c. Ultrastructure of sieve-element plastids in Caryophyllales (Centrospermae), evidence for the delimitation and classification of the order. Pl. Syst. & Evol. 126: 31–54.CrossRefGoogle Scholar
  155. —. 1976d. A tabulated survey of some characters of systematic importance in centrospermous families. Pl. Syst. & Evol. 126: 95–98.CrossRefGoogle Scholar
  156. —. 1976e. Sieve-element plastids ofFouquieria, Frankenia (Tamaricales), andRhabdodendron (Rutaceae), taxa sometimes allied with Centrospermae (Caryophyllales). Taxon 25: 265–268.CrossRefGoogle Scholar
  157. —. 1977a. Zur Skulptur der Pollen-Exine bei drei Centrospermen (Gisekia, Limeum, Hectorella), bei Gyrostemonaceen und Rhabdodendraceen. Pl. Syst. & Evol. 128: 227–235.CrossRefGoogle Scholar
  158. -. 1977b. Transmission electron microscopy and systematics of flowering plants.In K. Kubitzki (ed.), Flowering plants: Evolution and classification of higher categories, Symposium, Hamburg, September 8–12,1976. Pl. Syst. & Evol., Suppl. 1: 155–178. Springer-Verlag, Vienna.Google Scholar
  159. —. 1977c. S-type sieve-element plastids and anthocyanins in Vivianiaceae: Evidence against its inclusion into Centrospermae. Pl. Syst. & Evol. 126: 371–375.CrossRefGoogle Scholar
  160. —. 1977d. Phloem ultrastructure and systematic position of Gyrostemonaceae. Bot. Not. 130: 255–260.Google Scholar
  161. —. 1978. Elektronenoptische Untersuchungen am Phloem sukkulenter Centrospermen (inkl. Didiereaceen). Bot. Jahrb. Syst. 99: 341–352.Google Scholar
  162. —. 1981a. Sieve-element characters. Nord. J. Bot. 1: 381–400.Google Scholar
  163. —. 1981b.Swartzia: Phloem ultrastructure supporting its inclusion into Leguminosae-Papilionoideae. Iselya 2(1): 13–16.Google Scholar
  164. —. 1982a. Sieve-element plastids, exine sculpturing and the systematic affinities of the Buxaceae. Pl. Syst. & Evol. 139: 257–266.CrossRefGoogle Scholar
  165. —. 1982b.Geocarpon minimum: Sieve-element plastids as additional evidence for its inclusion in the Caryophyllaceae. Taxon 31: 45–47.CrossRefGoogle Scholar
  166. —. 1984. Ultrastructure of sieve-element plastids of Myrtales and allied groups. Ann. Missouri Bot. Gard. 71: 824–831.CrossRefGoogle Scholar
  167. —. 1985. Contributions to the knowledge of P-type sieve-element plastids in dicotyledons, II. Eucryphiaceae. Taxon 34: 607–610.CrossRefGoogle Scholar
  168. —. 1986a. Contributions to the knowledge of P-type sieve-element plastids in dicotyledons, IV. Acanthaceae. Bot. Jahrb. Syst. 106: 499–510.Google Scholar
  169. —. 1986b. Ultrastructure and differentiation of sieve elements in primitive angiosperms, II. Primary phloem sieve elements ofAustrobaileya maculala. Phytomorphology 36: 185–195.Google Scholar
  170. —. 1986c. Contributions to the knowledge of sieve-element plastids in Gunneraceae and allied families. Pl. Syst. & Evol. 151: 215–222.CrossRefGoogle Scholar
  171. —. 1988a. Sieve-element plastids, phloem protein, and evolution of flowering plants, III. Magnoliidae. Taxon 37: 699–732.CrossRefGoogle Scholar
  172. —. 1988b. Sieve-element plastids and systematic relationships of Rhizophoraceae, Anisophylleaceae and allied groups. Ann. Missouri Bot. Gard. 75: 1387–1409.CrossRefGoogle Scholar
  173. —. 1989. Sieve-element plastids, phloem proteins, and the evolution of flowering plants, IV. Hamamelidae. Pp. 1: 105–128in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  174. —. 1991a. Distribution and evolution of forms and types of sieve-element plastids in the dicotyledons. Aliso 13: 167–182.Google Scholar
  175. —. 1991b. Sieve-element characters ofTicodendron. Ann. Missouri Bot. Gard. 78: 131–134.CrossRefGoogle Scholar
  176. —. 1991c. Sieve-element characters of Myristicaceae: Nuclear crystals, S- and P-type plastids, nacreous walls. Nord. J. Bot. 11: 333–344.Google Scholar
  177. —. 1993. Further studies of the sieve-element plastids of the Caryophyllales includingBarbeuia, Corrigiola, Lyallia, Microtea, Sarcobatus, andTelephium. Pl. Syst. & Evol. 186: 231–243.CrossRefGoogle Scholar
  178. —. 1994. Sieve-element plastids: Their significance for the evolution and systematics of the order. Pp. 87–121in H.-D. Behnke & T. J. Mabry (eds.), Caryophyllales: Evolution and systematics. Springer-Verlag, Berlin.Google Scholar
  179. -. 1995a. Sieve-element plastids, phloem proteins, and the evolution of the Ranunculanae.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 25–37. Springer-Verlag, Vienna, New York.Google Scholar
  180. —. 1995b. Sieve-element characters of the Proteaceae and Elaeagnaceae: Nuclear crystals, phloem proteins and sieve-element plastids. Bot. Acta 108: 514–524.Google Scholar
  181. —. 1996. Endoplasmic reticulum derived decorated tubules in the sieve elements ofNymphaea. Protoplasma 193: 213–221.CrossRefGoogle Scholar
  182. —. 1997. Sarcobataceae: A new family of Caryophyllales. Taxon 46: 495–507.CrossRefGoogle Scholar
  183. —. 1998. P-type sieve element plastids present in members of the tribes Triplareae and Coccolobeae (Polygonaceae) renew the links between the Polygonales and the Caryophyllales. Pl. Syst. & Evol. 214: 15–27.CrossRefGoogle Scholar
  184. — &W. Barthlott. 1983. New evidence from the ultrastructural and micromorphological fields in angiosperm classification. Nord. J. Bot. 3: 43–66.Google Scholar
  185. — &R. Dahlgren. 1976. The distribution of characters within an angiosperm system, 2. Sieveelement plastids. Bot. Not. 129: 287–295.Google Scholar
  186. — &S. Kiritsis. 1983. Ultrastructure and differentiation of sieve elements in primitive angiosperms, I. Winteraceae. Protoplasma 118: 148–156.CrossRefGoogle Scholar
  187. — (eds.). 1994. Caryophyllales: Evolution and systematics. Springer-Verlag, Berlin.Google Scholar
  188. — &L. Pop. 1981. Sieve-element plastids and crystalline P(hloem)-protein in Leguminosae: Micromorphological characters as an aid to the circumscription of the family and subfamilies. Pp. 707–715in R. M. Polhill & P. H. Raven (eds.), Advances in legume systematics: Proceedings of the International Legume Conference, Kew, 24–29 July 1978. Royal Botanic Gardens, Kew.Google Scholar
  189. —,C. Chang, I. J. Eifert &T. J. Mabry. 1974. Betalains and P-type sieve-tube plastids inPetiveria andAgdestis (Phytolaccaceae). Taxon 23: 541–542.CrossRefGoogle Scholar
  190. —,T. J. Mabry, I. J. Eifert &L. Pop. 1975. P-type sieve-element plastids and betalains in Portulacaceae (includingCeraria, Portulacaria, Talinella). Canad. J. Bot. 53: 2103–2109.Google Scholar
  191. ——,T. J. Mabry, P. Neuman, &W. Barthlott. 1983a. Ultrastructural, “central position” ofMacarthuria (Molluginaceae) within the Caryophyllales. Pl. Syst. & Evol. 143: 151–161.CrossRefGoogle Scholar
  192. —,L. Pop &V. V. Sivarajan. 1983b. Sieve-element plastids of Caryophyllales: Additional investigations with special reference to the Caryophyllaceae and Molluginaceae. Pl. Syst. & Evol. 142: 109–115.CrossRefGoogle Scholar
  193. —,S. Kiritsis, S. J. Patrick &K. F. Kenneally. 1996. Form-Pfs plastids, stem anatomy and systematic affinities ofStylobasium Desf. (Stylobasiaceae). A contribution to the knowledge of sieveelement plastids in the Rutales and Sapindales. Bot. Acta 109: 346–359.Google Scholar
  194. Beijersbergen, A. 1972. Note on the chemotaxonomy of Huacaceae. Blumea 20: 160.Google Scholar
  195. Bell, C. &M. J. Donoghue. 2000. Dipsacales phylogeny based on chloroplast DNA sequences. Amer. J. Bot. 87(6): 171 (abstract).Google Scholar
  196. Bell, C. R. 1949. A cytotaxonomic study of the Sarraceniaceae of North America. J. Elisha Mitchell Sci. Soc. 65: 137–166.Google Scholar
  197. Bendz, G. &J. Santesson (eds.). 1974. Chemistry in botanical classification. Nobel Found., Stockholm.Google Scholar
  198. Benko-Iseppon, A. M. &W. Morawetz. 1993. Cold-induced chromosome regions and karyosystematics inSambucus andViburnum. Bot. Acta 106: 183–191.Google Scholar
  199. ——. 2000. Vibumales: Cytological features and a new circumscription. Taxon 49: 5–16.CrossRefGoogle Scholar
  200. Bensel, C. R. &B. F. Palser. 1975. Floral anatomy in the Saxifragaceaesensu lato. Respective parts published in Amer. J. Bot. as follows: I. Introduction, Parnassioideae and Brexioideae, 62: 176–185; III. Kirengeshomoideae, Hydrangeoideae, and Escallonioideae, 62:661-675; IV. Baueroideae and conclusions, 62: 688–694.Google Scholar
  201. Bentham, G. 1873. Notes on the classification, history and geographical distribution of Compositae. J. Linn. Soc., Bot. 13: 335–577.Google Scholar
  202. -& J. D. Hooker. 1862–1883. Genera plantarum. 3 vols. London.Google Scholar
  203. Benzing, D. H. 1990. Vascular epiphytes: General biology and related biota. Cambridge Univ. Press, Cambridge, England.Google Scholar
  204. Berg, C. C. 1973. Some remarks on the classification and differentiation of Moraceae. Meded. Bot. Mus. Herb. Rijks Univ. Utrecht 386: 1–10.Google Scholar
  205. -. 1977. Urticales, their differentiation and systematic position.In K. Kubitzki (ed.), Flowering plants: Evolution and classification of higher categories, Symposium, Hamburg, September 8–12, 1976. Pl. Syst. & Evol., Suppl. 1: 349–374. Springer-Verlag, Vienna.Google Scholar
  206. —. 1978. Cecropiaceae a new family of the Urticales. Taxon 27: 39–44.CrossRefGoogle Scholar
  207. —. 1989. Systematics and phylogeny of the Urticales. Pp. 2: 193–220in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  208. —. 1990. Differentiation of flowers and inflorescences of Urticales in relation to their protection against breeding insects and to pollination. Sommerfeltia 11: 13–34.Google Scholar
  209. —,R. W. A. P. Akkermans &E. C. H. van Heusden. 1990. Cecropiaceae:Coussapoa andPourouma, with an introduction to the family. Fl. Neotrop. Monogr. 51. New York Bot. Gard., Bronx.Google Scholar
  210. Berggren, S. T., S. Lee &J. Wen. 2000. Phylogenetic studies in the Amygdaloideae (Rosaceae) using ITS andndhF sequences. Amer. J. Bot. 87(6): 114 (abstract).Google Scholar
  211. Bergquist, G., B. Bremer &K. Bremer. 1992. Chloroplast DNA restriction site variation and phylogenetic interrelationships of some genera of the Heliantheaesensu lato (Asteraceae). Nord. J. Bot. 12: 149–154.Google Scholar
  212. Bergstrom, G., I. Groth, O. Pellmyr, P. K. Endress, L. B. Thien, A. Hubener &W. Francke. 1991. Chemical basis of a highly specific mutualism; chiral esters attract pollinating beetles in Eupomatiaceae. Phytochemistry 30: 3221–3225.CrossRefGoogle Scholar
  213. Bernardello, G., G. J. Anderson, P. Lopez, S. M. A. Cleland, T. F. Stuessy &D. K. Crawford. 1999. Reproductive biology ofLactoris fernandeziana (Lactoridaceae). Amer. J. Bot. 86: 829–840.CrossRefGoogle Scholar
  214. Bernhard, A. 1999. Flower structure, development and systematics in Passifloraceae and inAbatia (Flacourtiaceae). Int. J. Pl. Sci. 160: 135–150.CrossRefGoogle Scholar
  215. — &P. K. Endress. 1998. Androecial development and systematics in Flacourtiaceaes.l. Pl. Syst. & Evol. 215: 141–155.CrossRefGoogle Scholar
  216. Bessey, C. E. 1893. Evolution and classification. Bot. Gaz. 18: 329–333.CrossRefGoogle Scholar
  217. —. 1894. further studies in the relationship and arrangement of the families of flowering plants. Bot. Gaz. 19: 372–373.Google Scholar
  218. —. 1897. Phylogeny and taxonomy of the angiosperms. Bot. Gaz. 24: 145–178.CrossRefGoogle Scholar
  219. —. 1915. The phylogenetic taxonomy of flowering plants. Ann. Missouri Bot. Gard. 2: 109–164.CrossRefGoogle Scholar
  220. Beusekom, C. F. van &T. P. M. van de Water. 1989. Sabiaceae. Fl. Males. 10: 679–715.Google Scholar
  221. Beusekom-Osinga, R. J. van. 1977. Crypteroniaceae. Fl. Males., I, 8: 187–204.Google Scholar
  222. — &C. F. van Beusekom. 1975. Delimitation and subdivision of the Crypteroniaceae (Myrtales). Blumea 22: 255–266.Google Scholar
  223. Bhatnagar, A. K. &M. Garg. 1977. Affinities ofDaphniphyllum: Palynological approach. Phytomorphology 27: 92–97.Google Scholar
  224. — &R. N. Kapil. 1974.Bischofia javanica: Its relationships with Euphorbiaceae. Phytomorphology 23: 264–267.Google Scholar
  225. Bigazzi, M. 1989. Ultrastructure of nuclear inclusions and the separation of Verbenaceae and Oleaceae (incl.Nyctanthes). Pl. Syst. & Evol. 163: 1–12.CrossRefGoogle Scholar
  226. Bittrich, V. 1993a. Introduction to Centrospermae. Pp. 13–19in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  227. —. 1993b. Achatocarpaceae. Pp. 35–36in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  228. —. 1993c. Caryophyllaceae. Pp. 206–236in K. Kubitski, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  229. —. 1993d. Halophytaceae. Pp. 320–321in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  230. — &H. E. K. Hartmann. 1988. The Aizoaceae—A new approach. J. Linn. Soc., Bot. 97: 239–254.Google Scholar
  231. — &U. Kühn. 1993. Nyctaginaceae. Pp. 473–486in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  232. — &M. Struck. 1989. What is primitive in Mesembyanthemaceae? An analysis of evolutionary polarity of character states. S. African J. Bot. 55: 321–331.Google Scholar
  233. Blackmore, S. &M. J. Cannon. 1983/84. Palynology and systematics of Morinaceae. Rev. Paleobot. Palynol. 40: 207–226.CrossRefGoogle Scholar
  234. —,P. Stafford &V. Persson. 1995. Palynology and systematics of Ranunculiflorae.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 71–82. Springer-Verlag, Vienna, New York.Google Scholar
  235. Blake, S. T. 1972.Idiospermum (Idiospermaceae), a new genus and family forCalycanthus australiensis. Contr. Queensland Herb. 12: 1–37.Google Scholar
  236. Blank, F. 1939. Beitrag zur Morphologie vonCaryocar nuciferum L. Ber. Schweiz. Bot. Ges. Bern 49: 437–494.Google Scholar
  237. Blarer, A., D. Nickrent, H. Banziger, P. K. Endress &Y-L. Qiu. 2000. Phylogenetic relationships among genera of the parasitic family Rafflesiaceaes.l. Based on nuclear ITS and SSUrDNA, mitochondrial LSU and SSUrDNA, atpl, andmatR sequences. Amer. J. Bot. 87(6): 171 (abstract).Google Scholar
  238. Blattner, F. R. &J. W. Kadereit. 1995. Three intercontinental disjunctions in Papaveraceae subfamily Chelidonioideae: Evidence fromchloroplast DNA.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 147–157. Springer-Verlag, Vienna.Google Scholar
  239. Bloembergen, S. 1939. A revision of the genusAlangium. Bull. Jard. Bot. Buitenzorg III. 6: 139–235.Google Scholar
  240. Boesewinkel, F. D. 1980. Development of ovule and testa ofLinum usitatissimum L. Acta Bot. Neerl. 29: 17–32.Google Scholar
  241. —. 1984a. Development of ovule and seed coat inCneorum tricoccon L. (Cneoraceae). Acta Bot. Neerl. 33: 61–70.Google Scholar
  242. —. 1984b. Ovule and seed structure in Datiscaceae. Acta Bot. Neerl. 33: 419–429.Google Scholar
  243. —. 1985. The ovule and seed ofHumiria balsamifera (Aubl.) St. Hil. Acta Bot. Neerl. 34: 183–191.Google Scholar
  244. —. 1987. Ovules and seeds of Trigoniaceae. Acta Bot. Neerl. 36: 81–91.Google Scholar
  245. —. 1988. The seed structure and taxonomic relationships ofHypseocharis Remy. Acta Bot. Neerl. 37: 111–120.Google Scholar
  246. —. 1989. Ovule and seed development in Droseraceae. Acta Bot. Neerl. 38: 295–311.Google Scholar
  247. —. 1990. Ovule and seed development ofTovaria pendula Ruiz et Pavon. Bot. Jahrb. Syst.111: 389–401.Google Scholar
  248. —. 1997. Seed structure and phylogenetic relationships of the Geraniales. Bot. Jahrb. Syst. 119: 277–291.Google Scholar
  249. —. 1999. Ovules and seeds of Tremandraceae. Austral. J. Bot. 47: 769–781.CrossRefGoogle Scholar
  250. — &W. Been. 1979. Development of ovule and testa ofGeranium pratense L. and some other representatives of the Geraniaceae. Acta. Bot. Neerl. 28: 335–348.Google Scholar
  251. — &F. Bouman. 1997. Ovules and seeds ofDirachma socotrana (Dirachmaceae). Pl. Syst. & Evol. 205: 195–204.CrossRefGoogle Scholar
  252. — &M. Venturelli. 1987. Ovule and seed structure in Vochysiaceae. Bot. Jahrb. Syst. 108: 547–566.Google Scholar
  253. Boeshore, I. 1920. The morphological continuity of Scrophulariaceae and Orobanchaceae. Contr. Bot. Lab. Univ. Pa. 5: 139–177.Google Scholar
  254. Bogle, A. L. 1969. The genera of Portulacaceae and Basellaceae in the southeastern United States. J. Arnold Arbor. 50: 566–598.Google Scholar
  255. —. 1970a. Floral morphology and vascular anatomy of the Hamamelidaceae: The apetalous genera of Hamamelidoideae. J. Arnold Arbor. 51: 310–366.Google Scholar
  256. —. 1970b. The genera of Molluginaceae and Aizoaceae in the southeastern United States. J. Arnold Arbor. 51: 431–462.Google Scholar
  257. —. 1974. The genera of Nyctaginaceae in the southeastern United States. J. Arnold Arbor. 55: 1–37.Google Scholar
  258. —. 1986. The floral morphology and vascular anatomy of the Hamamelidaceae: Subfamily Liquidambaroideae. Ann. Missouri Bot. Gard. 73: 325–347.CrossRefGoogle Scholar
  259. —. 1989. The floral morphology, vascular anatomy, and ontogeny of the Rhodoleioideae (Hamamelidaceae) and their significance in relation to the “lower” Hamamelids. Pp. 2: 201–220in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  260. — &C. T. Philbrick. 1980. A genera atlas of hamamelidaceous pollens. Contr. Gray Herb. 210: 29–103.Google Scholar
  261. Böhm, B. A. &J. E. Averett. 1989. Flavonoids in some Monotropoideae. Biochem. Syst. Ecol. 17: 399–401.CrossRefGoogle Scholar
  262. — &J. Chan. 1992. Flavonoids and affinities of Greyiaceae with a discussion of the occurrence of B-ring deoxyflavonoids in dicotyledonous families. Syst. Bot. 17: 272–281.CrossRefGoogle Scholar
  263. —. 1981. Leaf flavonoids and ordinal affinities of Coriariaceae. Syst. Bot. 6: 15–26.CrossRefGoogle Scholar
  264. —,K. W. Nicholls &U. C. Bhat. 1985. Flavonoids of the Hydrangeaceae Dumortier. Biochem. Syst. Ecol. 13: 441–445.CrossRefGoogle Scholar
  265. —,L. S. Donevan &U. C. Bhat. 1986. Flavonoids of some species ofBergenia, Francoa, Parnassia, andLepuropetalon. Biochem. Syst. Ecol. 14: 75–77.CrossRefGoogle Scholar
  266. —,G. Chalmers &U. C. Bhat. 1988. Flavonoids and the relationship ofItea to the Saxifragaceae. Phytochemistry 27: 2651–2653.CrossRefGoogle Scholar
  267. Bolkhovskikh, Z., V. Grif, T. Matvejeva & O. Zakharyeva. 1969. Chromosome numbers of flowering plants. Ed. A. A. Fedorov, Acad. Sci. USSR, Leningrad [Russian and English prefaces).Google Scholar
  268. Bolli, R. 1994. Revision of the genusSambucus. Diss. Bot. 223: 1–227,28 plates.Google Scholar
  269. Bondeson, W. 1952. Entwicklungsgeschichte und Bau der Spaltöffnungen bei den GattungenTrochodendron Sieb, et Zucc.,Tetracentron Oliv. undDrimys J. R. et G. Forst. Acta Horti Berg. 16: 169–218.Google Scholar
  270. Boothroyd, L. E. 1930. The morphology and anatomy of the inflorescence and flower of the Platanaceae. Amer. J. Bot. 17: 678–693.CrossRefGoogle Scholar
  271. Bornstein, A. J. 1991. The Piperaceae in the southeastern United States. J. Arnold Arbor. Suppl. Ser. 1: 349–366.Google Scholar
  272. Borsch, T., K. W. Hilu, V. Wilde, C. Neinhuis &W. Barthlott. 2000. Phylogenetic analysis of noncoding chloroplast DNA sequences revealsAmborella as basalmost angiosperm. Amer. J. Bot. 87(6): 115–116 (abstract).Google Scholar
  273. Boufford, D. E., A. Kjaer, J. O. Madsen &T. Skrydstrup. 1989. Glucosinolates in Bretschneideraceae. Biochem. Syst. Ecol. 17: 375–379.CrossRefGoogle Scholar
  274. Bouman, F. 1977. Integumentary studies in the Polycarpicae, IV.Liriodendron tulipifera L. Acta Bot. Neerl. 26: 213–223.Google Scholar
  275. — &F. D. Boesewinkel. 1991. The campylotropous ovules and seeds, their structure and functions. Bot. Jahrb. Syst. 113: 255–270.Google Scholar
  276. —&A. de Lange. 1983. Structure, micromorphology ofBegonia seeds. Begonian 50: 70–78,91.Google Scholar
  277. -& W. Meijer. 1987. Seeds of Rafflesiaceae. Abstr. XIV Int. Bot. Congr., Berlin, 4-17b-9.Google Scholar
  278. ——. 1994. Comparative structure of ovules and seeds in Rafflesiaceae. Pl. Syst. & Evol. 193: 187–212.CrossRefGoogle Scholar
  279. Boureau, E. 1958. Contribution à l’étude anatomique des espèces actuelles de Ropalocarpaceae. Bull. Mus. Hist. Nat. (Paris). 30, Ser. 2: 213–221.Google Scholar
  280. Bradford, J. 1999. Phylogenetic studies in the Cunoniaceae (Oxalidales). XVI Int. Bot. Congr., St. Louis, Mo., poster abstr. 546, p. 383.Google Scholar
  281. Brandbyge, J. 1993. Polygonaceae. Pp. 531–544in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  282. Bremer, B. 1987. Tribal interrelationships of the Asteraceae. Cladistics 3: 221–253.Google Scholar
  283. —. 1992. Phylogeny of the Rubiaceae (Chiococceae) based on molecular and morphological data: Useful approaches for classification and comparative ecology. Ann. Missouri Bot. Gard. 79: 380–387.CrossRefGoogle Scholar
  284. —. 1996a. Combined and separate analyses of morphological and molecular data in the plant family Rubiaceae. Cladistics 12: 21–40.CrossRefGoogle Scholar
  285. —. 1996b. Phylogenetic studies within Rubiaceae and relationships to other families based on molecular data. Pp. 33–50in E. Robbrecht, C. Puff & E. Smets (eds.), Second International Rubiaceae Conference proceedings. Opera botanica Belgica, 7. National Botanic Garden of Belgium, Meise.Google Scholar
  286. — &O. Eriksson. 1992. Evolution of fruit characters and dispersal modes in the tropical family Rubiaceae. J. Linn. Soc., Biol. 47: 79–95.CrossRefGoogle Scholar
  287. — &R. K. Jansen. 1991. Comparative restriction site mapping of chloroplast DNA implies new phylogenetic relationships within Rubiaceae. Amer. J. Bot. 78: 198–213.CrossRefGoogle Scholar
  288. — &L. Struwe. 1992. Phylogeny of the Rubiaceae and the Loganiaceae: Congruence or conflict between morphological and molecular data. Amer. J. Bot. 79: 1171–1184.CrossRefGoogle Scholar
  289. —, R. G. Olmstead, L. Struwe &J. A. Sweere. 1994.rbcL sequences support exclusion ofRetzia, Desfontainia, andNicodemia from the Gentianales. Pl. Syst. & Evol. 190: 213–230.CrossRefGoogle Scholar
  290. —, K. Andreasen &D. Olsson. 1995. Subfamilial and tribal relationships in the Rubiaceae based onrbcL sequence data. Ann. Missouri Bot. Gard. 82: 383–397.CrossRefGoogle Scholar
  291. —, R. K. Jansen, B. Oxelman, M. Backlund, H. Lantz &K.-J. Kim. 1999. More characters or more taxa for a robust phylogeny—Case study from the coffee family (Rubiaceae). Syst. Biol. 58: 413–435.CrossRefGoogle Scholar
  292. Bremer, K. 1992. Ancestral areas: A cladistic reinterpretation of the center of origin concept. Syst. Biol. 41: 436–445.CrossRefGoogle Scholar
  293. —. 1994. Asteraceae: Cladistics and classification. Timber Press, Portland, OR.Google Scholar
  294. —. 1996. Major clades and grades of the Asteraceae. Pp. 1–7in D. J. N. Hind & H. J. Beentje (eds.), Proceedings of the International Compositae Conference, Kew, 1994. Vol. 1. Compositae: Systematics. Royal Botanic Gardens, Kew.Google Scholar
  295. — &C. J. Humphries. 1993. Generic monograph of the Asteraceae-Anthemideae. Bull. Nat. Hist. Mus. London, Bot. 23: 71–177.Google Scholar
  296. — &R. K. Jansen. 1992. A new subfamily of the Asteraceae. Ann. Missouri Bot. Gard. 79: 414–415.CrossRefGoogle Scholar
  297. ——., P. O. Karis, M. Källersjö, S. C. Keeley, K.-J. Kim, H. J. Michaels, J. D. Palmer &R. S. Wallace. 1992. A review of the phylogeny and classification of the Asteraceae. Nord. J. Bot. 12(2): 141–148.Google Scholar
  298. Brenan, J. P. M. 1952. Plants of the Cambridge Expedition, 1947–1948: II. A new order [Medusandrales] of flowering plants from the British Cameroons. Kew Bull. 1952: 227–236.CrossRefGoogle Scholar
  299. Brenner, G. J. 1987. Paleotropical evolution of the Magnoliidae in the Lower Cretaceous of Northern Gondwana. Amer. J. Bot. 74(5): 677–678 (abstract).Google Scholar
  300. —. 1996. Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. Pp. 91–115in D. W. Taylor & L. J. Hickey (eds.), Flowering plant origin, evolution & phylogeny. Chapman & Hall, New York.CrossRefGoogle Scholar
  301. — &I. S. Bickoff. 1992. Palynology and age of the Lower Cretaceous basal Kumub Group from the coastal plain to the northern Negev of Israel. Palynology 16: 137–185.Google Scholar
  302. Breteler, F. J. (ed.). 1989. The Connaraceae: A taxonomic study with emphasis on Africa. Wageningen Agric. Univ., Wageningen, Netherlands.Google Scholar
  303. Bretting, P. K. &S. Nilsson. 1988. Pollen morphology of the Martyniaceae and its systematic implications. Syst. Bot. 13: 51–59.CrossRefGoogle Scholar
  304. Brewbakcr, J. L. 1967. The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Amer. J. Bot. 54: 1069–1083.CrossRefGoogle Scholar
  305. Bridgwater, S. D. &P. Baas. 1978. Wood anatomy of the Punicaceae. IAWA Bull. 1: 3–6.Google Scholar
  306. Bridsen, D. M. 1975. A revision of the family Vahliaceae. Kew Bull. 30: 163–182.CrossRefGoogle Scholar
  307. Briggs, B. G., B. P. M. Hyland &L. A. S. Johnson. 1975.Sphalmium, a distinctive new genus of Proteaceae from north Queensland. Austral. J. Bot. 23: 165–172.CrossRefGoogle Scholar
  308. —. 1979. Evolution in the Myrtaceae: Evidence from inflorescence structure. Proc. Linn. Soc. N.S.W. 102: 157–256.Google Scholar
  309. Brizicky, G. K. 1961a. The genera of Turneraceae and Passifloraceae in the southeastern United States. J. Arnold Arbor. 42: 204–218.Google Scholar
  310. —. 1961b. The genera of Violaceae in the southeastern United States. J. Arnold Arbor. 42: 321–333.Google Scholar
  311. —. 1961c. A synopsis of the genusColumellia (Columelliaceae). J. Arnold Arbor. 42: 363–372.Google Scholar
  312. —. 1962a. The genera of Rutaceae in the southeastern United States. J. Arnold Arbor. 43: 1–22.Google Scholar
  313. —. 1962b. The genera of Simaroubaceae and Burseraceae in the southeastern United States. J. Arnold Arbor. 43: 173–186.Google Scholar
  314. —. 1962c. The genera of Anacardiaceae in the southeastern United States. J. Arnold Arbor. 43: 359–375.Google Scholar
  315. —. 1963. The genera of Sapindales in the southeastern United States. J. Arnold Arbor. 44: 462–501.Google Scholar
  316. —. 1964a. The genera of Cistaceae in the southeastern United States. J. Arnold Arbor. 45: 346–357.Google Scholar
  317. —. 1964b. The genera of Rhamnaceae in the southeastern United States. J. Arnold Arbor. 45: 439–463.Google Scholar
  318. —. 1964c. The genera of Celastrales in the southeastern United States. J. Arnold Arbor. 45: 206–234.Google Scholar
  319. —. 1965a. The genera of Vitaceae in the southeastern United States. J. Arnold Arbor. 46: 48–67.Google Scholar
  320. —. 1965b. The genera of Tiliaceae and Elaeocarpaceae in the southeastern United States. J. Arnold Arbor. 46: 286–307.Google Scholar
  321. —. 1966. The genera of Sterculiaceae in the southeastern United States. J. Arnold Arbor. 47: 60–74.Google Scholar
  322. Brown, G. K. &G. S. Varadarajan. 1985. Studies in Caryophyllales I: Re-evaluation of classification of Phytolaccaceaes.l. Syst. Bot. 10: 49–63.CrossRefGoogle Scholar
  323. Brown, W. H. 1938. The bearing of nectaries on the phylogeny of flowering plants. Proc. Amer. Philos. Soc. 79: 549–595.Google Scholar
  324. Bruce, E. A. 1953. Notes on African Pedaliaceae. Kew Bull. 1953: 417–429.CrossRefGoogle Scholar
  325. Brückner, C. 1985. Frucht- und Samenanatomie vonPteridophyllum racemosum Sieb. & Zucc. und die Position der monotypischen Gattung in den Papaverales. Feddes Repert. 96: 199–213.Google Scholar
  326. —. 1995. Comparative seed structure in the Ranunculiflorae.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 83–84. Springer-Verlag, Vienna, New York.Google Scholar
  327. Brummitt, R. K. 1989. Against separating Mendonciaceae from Acanthaceae. Acanthus 5: 1–3.Google Scholar
  328. —. 1992. Vascular plant families and genera: A listing of the genera of vascular plants of the world according to their families, as recognized in the Kew Herbarium, with an analysis of relationships of the flowering plant families according to eight systems of classification. Royal Botanic Gardens, Kew.Google Scholar
  329. —. 1996. In defense of paraphyletic taxa. Pp. 371–384in L. J. G. van der Maesen, X. M. van der Bürgt & J. M. van Medenbach de Rooy (eds.), The biodiversity of African plants. Kluwer Acad. Publ., London.Google Scholar
  330. —. 1997. Taxonomy versus cladonomy, a fundamental controversy in biological systematics. Taxon 46: 723–734.CrossRefGoogle Scholar
  331. — &M. S. M. Sosef. 1998. Paraphyletic taxa are inherent in Linnaean classification: A reply to Freudenstein. Taxon 47: 411–412.CrossRefGoogle Scholar
  332. Budzikiewicz, H., S. C. Pakrashi &H. Vorbrüggen. 1964. Die Isolierung von Emetin, Cephaelin und Psychotrin ausAlangium lamarckii und die identifizierung von Almarckine mit N.-Methylcephaelin. Tetrahedron 20: 399–408.CrossRefGoogle Scholar
  333. Bult, C. J. &E. A. Zimmer. 1993. Nuclear ribosomal RNA sequences for inferring tribal relationships within Onagraceae. Syst. Bot. 18: 48–63.CrossRefGoogle Scholar
  334. Burger, W. C. 1977. Flora Costaricensis: Lacistemaceae. Fieldiana, Bot. 40: 11–13.Google Scholar
  335. —. 1979. Cladistics: Useful tool or rigid dogma? Taxon 28: 385–389.CrossRefGoogle Scholar
  336. —. 1998. The question of cotyledon homology in angiosperms. Bot. Rev. (Lancaster) 64: 356–371.Google Scholar
  337. Burtt, B. L. 1965. The transfer ofCyrtandromoea from Gesneriaceae to Scrophulariaceae, with notes on the classification of that family. Bull. Bot. Surv. India 7: 73–88.Google Scholar
  338. —. 1977. Classification above the genus, as exemplified by Gesneriaceae, with parallels from other groups.In K. Kubitzki (ed.), Flowering plants: Evolution and classification of higher categories, Symposium, Hamburg, September 8–12, 1976. Pl. Syst. & Evol., Suppl. 1: 97–109. Springer-Verlag, Vienna.Google Scholar
  339. —. 1991. On cryptocotylar germination in dicotyledons. Bot. Jahrb. Syst. 113: 429–442.Google Scholar
  340. —&H. Wiehler. 1995. Classification of the family Gesneriaceae. Gesneriana 1: 1–4.Google Scholar
  341. Buxbaum, F. 1948. Zur Klärung der phylogenetischen Stellung der Aizoaceae und Cactaceae im Pflanzenreich. Sukkulentenkunde 2: 3–16.Google Scholar
  342. Cabrera, A. L. 1977. Mutiseae: Systematic review. Pp. 1039–1066in V. H. Heywood, J. B. Harborne & B. L. Turner (eds.), The biology and chemistry of the Compositae. Academic Press, New York.Google Scholar
  343. Calder, M. &P. Bernhardt (eds.). 1983. The biology of mistletoes. Acad. Press, New York.Google Scholar
  344. Calderon de Rzedowski, G. &J. Rzedowski. 1997.Velascoa (Crossosomataceae), un género nuevo de la Sierra Madre Oriental de México. Acta Bot. Mex. 39: 53–59.Google Scholar
  345. Call, V. B. 1993. The evolution and fossil record of anemochory among angiosperms from the Cretaceous-Paleogene of North America. Amer. J. Bot. 80(6): 87–88(abstract).Google Scholar
  346. —&D. L. Dilcher. 1997. The fossil record ofEucommia (Eucommiaceae) in North America. Amer. J. Bot. 84: 798–814.CrossRefGoogle Scholar
  347. Cameron, K. M., M. W. Chase &S. M. Swensen. 1995. Molecular evidence for the relationships ofTriphyophyllum (Dioncophyllaceae) andAncistrocladus (Ancistrocladaceae). Amer. J. Bot. 82(3): 117–118 (abstract).Google Scholar
  348. Campbell, D. S., M. J. Donoghue, B. G. Baldwin &M. F. Wojciechowski. 1995. Phylogenetic relationships in Maloideae (Rosaceae): Evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology. Amer. J. Bot. 82: 903–918.CrossRefGoogle Scholar
  349. Campbell, N. &W. W. Thomson. 1976. The ultrastructure ofFrankenia salt glands. Ann. Bot. 40: 681–686.Google Scholar
  350. Candolle, A. P. de. 1824–1873. Prodromus systematis naturalis regni vegetabilis. 17 vols. Treuttel & Wilrtz, Paris.Google Scholar
  351. Cannon, M. J. &F. M. Cannon. 1984. A revision of the Morinaceae (Magnoliophyta-Dipsacales). Bull. Brit. Mus. (Nat. Hist), Bot. 12: 1–35.Google Scholar
  352. Canright, J. E.1952–1960. The comparative morphology and relationships of the Magnoliaceae, I. Trends of specialization in the stamens. Amer. J. Bot. 39: 484–497 (1952); II. Significance of the pollen. Phytomorphology 3: 355–365 (1953); IV. Wood and nodal anatomy. J. Arnold Arbor. 36: 119–140 (1955); III. Carpels. Amer. J. Bot. 47: 145–155 (1960).CrossRefGoogle Scholar
  353. —. 1963. Contributions of pollen morphology to the phylogeny of some ranalean families. Grana Palynol. 4: 64–72.Google Scholar
  354. Cantino, P. D. 1982. Affinities of the Lamiales: A cladistic analysis. Syst. Bot. 7: 237–248.CrossRefGoogle Scholar
  355. —. 1990. The phylogenetic significance of stomata and trichomes in the Labiatae and Verbenaceae. J. Arnold. Arbor. 71: 323–370.Google Scholar
  356. —. 1992a. Evidence for a polyphyletic origin of the Labiatae. Ann. Missouri Bot. Gard. 79: 361–379.CrossRefGoogle Scholar
  357. —. 1992b. Toward a phylogenetic classification of the Labiatae. Pp. 27–37in R. M. Harley & T. Reynolds (eds.), Advances in labiate science. Royal Botanic Gardens, Kew.Google Scholar
  358. —&M. S. Abu-Asab. 1993. A new look at the enigmatic genusWenchengia (Labiatae). Taxon 42: 339–344.CrossRefGoogle Scholar
  359. —&R. W. Sanders. 1986. Subfamilial classification of Labiatae. Syst. Bot. 11: 163–185.CrossRefGoogle Scholar
  360. —,R. M. Harley &S. J. Wagstaff. 1992. Genera of Labiatae: Status and classification. Pp. 511–522in R. M. Harley & T. Reynolds (eds.), Advances in labiate science. Royal Botanic Gardens, Kew.Google Scholar
  361. —,S. J. Wagstaff &R. G. Olmstead. 1999.Caryopteris (Lamiaceae) and the conflict between phylogenetic and pragmatic considerations in botanical nomenclature. Syst. Bot. 23: 369–386.CrossRefGoogle Scholar
  362. Capuron, R. 1962. Révision des Rhopalocarpacées. Adansonia, sér. 2, 2: 228–267.Google Scholar
  363. —. 1963. Contributions a l’étude de la flora de Madagascar, XV.Diegodendron Capurongen. nov., type de la nouvelle famille des Diegodendraceae (Ochnales sensu Hutchinson). Adansonia, n.s., 3: 385–392.Google Scholar
  364. —. 1970. Observations sur les Sarcolaenacées. Adansonia sér. 2, 10: 247–265.Google Scholar
  365. Caputo, P. &S. Cozzolino. 1994. A cladistic analysis of Dipsacaceae (Dipsacales). Pl. Syst. & Evol. 189: 41–61.CrossRefGoogle Scholar
  366. Carlquist, S. 1959. Studies on Madinae: Anatomy, cytology, and evolutionary relationships. Aliso 4: 171–236.Google Scholar
  367. —. 1961. Comparative plant anatomy. A guide to taxonomic and evolutionary application of anatomical data in angiosperms. Holt, Rinehart & Winston, New York.Google Scholar
  368. —. 1964a. Morphology and relationships of Lactoridaceae. Aliso 5: 421–435.Google Scholar
  369. —. 1964b. Pollen morphology and evolution of Sarcolaenaceae (Chlaenaceae). Brittonia 16: 231–254.CrossRefGoogle Scholar
  370. —. 1966. Wood anatomy of Compositae: A summary with comments on factors controlling wood evolution. Aliso 6(2): 25–44.Google Scholar
  371. —. 1969a. Studies in Stylidiaceae: New taxa, field observations, evolutionary tendencies. Aliso 7: 13–64.Google Scholar
  372. —. 1969b. Wood anatomy of Goodeniaceae and the problem of insular woodiness. Ann. Missouri Bot. Gard. 56: 358–390.CrossRefGoogle Scholar
  373. —. 1975. Wood anatomy and relationships of the Geissolomataceae. Bull. Torrey Bot. Club 102: 128–134.CrossRefGoogle Scholar
  374. —. 1976a. Wood anatomy ofMyrothamnus flabellifolia (Myrothamnaceae) and the problem of multiperforate perforation plates. J. Arnold Arbor. 57: 119–126.Google Scholar
  375. —. 1976b. Wood anatomy of Byblidaceae. Bot. Gaz. 137: 35–38.CrossRefGoogle Scholar
  376. —. 1976c. Wood anatomy of Roridulaceae: Ecological and phylogenetic implications. Amer. J. Bot. 63: 1003–1008.CrossRefGoogle Scholar
  377. —. 1976d. Tribal interrelationships and phylogeny of the Asteraceae. Aliso 8: 465–492.Google Scholar
  378. —. 1977a. A revision of Grubbiaceae. J. S. African Bot. 43: 115–128.Google Scholar
  379. —. 1977b. Wood anatomy of Grubbiaceae. J. S. African Bot. 43: 129–144.Google Scholar
  380. —. 1977c. Wood anatomy of Tremandraceae: Phylogenetic and ecological implications. Amer. J. Bot. 64: 704–713.CrossRefGoogle Scholar
  381. —. 1978a. Wood anatomy of Bruniaceae: Correlations with ecology, phylogeny, and organography. Aliso 9: 323–364.Google Scholar
  382. —. 1978b. Vegetative anatomy and systematics of Grubbiaceae. Bot. Not. 131: 117–126.Google Scholar
  383. —. 1978c. Wood anatomy and relationships of Bataceae, Gyrostemonaceae and Stylobasiaceae. Allertonia 1: 297–330.Google Scholar
  384. —. 1980. Anatomy and systematics of Balanopaceae. Allertonia 2: 191–246.Google Scholar
  385. —. 1981a. Wood anatomy of Pittosporaceae. Allertonia 2: 355–392.Google Scholar
  386. —. 1981b. Wood anatomy of Nepenthaceae. Bull. Torrey Bot. Club 108: 321–330.CrossRefGoogle Scholar
  387. —. 1982a. Wood anatomy ofIllicium (Illiciaceae): Phylogenetic, ecological, and functional interpretations. Amer. J. Bot. 69: 1587–1598.CrossRefGoogle Scholar
  388. —. 1982b. Wood anatomy of Buxaceae: Correlations with ecology and phylogeny. Flora 172: 463–491.Google Scholar
  389. —. 1983a. Wood anatomy ofBelliolum (Winteraceae) and a note on flowering. J. Arnold Arbor. 64: 161–169.Google Scholar
  390. —. 1983b. Wood anatomyof Bubbia (Winteraceae), with comments on origin of vessels in dicotyledons. Amer. J. Bot. 70: 578–590.CrossRefGoogle Scholar
  391. —. 1984a. Wood anatomy of some Gentianaceae: Systematic and ecological conclusions. Aliso 10: 573–582.Google Scholar
  392. —. 1984b. Wood and stem anatomy ofBergia suffruticosa: Relationships of Elatinaceae and broader significance of vascular tracheids, vasicentric tracheids, and fibriform vessel elements. Ann. Missouri Bot. Gard. 71: 232–242.CrossRefGoogle Scholar
  393. —. 1984c. Wood anatomy and relationships of Pentaphylacaceae: Significance of vessel features. Phytomorphology 34: 84–90.Google Scholar
  394. —. 1984d. Wood anatomy of Malesherbiaceae. Phytomorphology 34: 180–190.Google Scholar
  395. —. 1984e. Wood anatomy of Loasaceae with relation to systematics, habit, and ecology. Aliso 10: 583–602.Google Scholar
  396. —. 1984f. Wood and stem anatomy of Lardizabalaceae: With comments on the vining habit, ecology, and systematics. J. Linn. Soc., Bot. 88: 257–277.Google Scholar
  397. —. 1984g. Wood anatomy of Trimeniaceae. Pl. Syst. & Evol. 144: 103–118.CrossRefGoogle Scholar
  398. —. 1985a. Wood anatomy of Begoniaceae, with comments on raylessness, paedomorphosis, relationships, vessel diameter, and ecology. Bull. Torrey Bot. Club 112: 59–69.CrossRefGoogle Scholar
  399. —. 1985b. Wood anatomy of Coriariaceae: Phylogenetic and ecological implications. Syst. Bot. 10: 174–183.CrossRefGoogle Scholar
  400. —. 1985c. Vegetative anatomy and familial placement ofTovaria. Aliso 11: 69–76.Google Scholar
  401. —. 1985d. Wood anatomy and familial status ofViviania. Aliso 11: 159–165.Google Scholar
  402. —. 1985e. Wood and stem anatomy of Misodendraceae: Systematic and ecological conclusions. Brittonia 37: 58–75.CrossRefGoogle Scholar
  403. —. 1986. Wood anatomy of Stilbaceae and Retziaceae: Ecological and systematic implications. Aliso 11: 299–316.Google Scholar
  404. —. 1987a. Wood anatomy of Nolanaceae. Aliso 11: 463–471.Google Scholar
  405. —. 1987b. Wood anatomy and relationships of Stackhousiaceae. Bot. Jahrb. Syst. 108: 473–480.Google Scholar
  406. —. 1987c. Wood anatomy of Martyniaceae and Pedaliaceae. Aliso 11: 473–483.Google Scholar
  407. —. 1987d. Wood anatomy ofPlakothira (Loasaceae). Aliso 11: 563–569.Google Scholar
  408. —. 1987e. Presence of vessels in wood ofSarcandra (Chloranthaceae); comments on vessel origins in angiosperms. Amer. J. Bot. 74: 1765–1771.CrossRefGoogle Scholar
  409. —. 1988a. Wood anatomy of Cneoraceae: Ecology, relationships, and generic definition. Aliso 12: 7–16.Google Scholar
  410. —. 1988b. Wood anatomy of Scytopetalaceae. Aliso 12: 63–76.Google Scholar
  411. —. 1988c. Wood anatomy and relationships of Duckeodendraceae and Goetzeaceae. IAWA Bull., n.s., 9: 3–12.Google Scholar
  412. —. 1988d. Comparative wood anatomy: Systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer-Verlag, Berlin.Google Scholar
  413. —. 1989a. Wood anatomy ofTasmannia; summary of wood anatomy of Winteraceae. Aliso 12: 257–275.Google Scholar
  414. —. 1989b. Wood anatomy and relationships ofMontinia. Aliso 12: 369–378.Google Scholar
  415. —. 1989c. Wood and bark anatomy ofDegeneria. Aliso 12: 485–495.Google Scholar
  416. —. 1989d. Wood and bark anatomy of Empetraceae; comments on paedomorphosis in woods of certain small shrubs. Aliso 12: 497–515.Google Scholar
  417. —. 1990a. Wood anatomy and relationships of Lactoridaceae. Amer. J. Bot. 77: 1498–1504.CrossRefGoogle Scholar
  418. —. 1990b. Phylogeny of the Asterideae: Evidence from wood anatomy of tubiflorous families. Amer. J. Bot. (Suppl.) 77(6): 110–111 (abstract).Google Scholar
  419. —. 1990c. Leaf anatomy of Geissolomataceae and Myrothamnaceae as apossible indicator of relationship to Bruniaceae. Bull. Torrey Bot. Club 117: 420–428.CrossRefGoogle Scholar
  420. —. 1990d. Wood anatomy ofAscarina (Chloranthaceae) and the tracheid-vessel element transition. Aliso 123: 667–684.Google Scholar
  421. —. 1991a. Wood and bark anatomy ofTicodendron: Comments on relationships. Ann. Missouri Bot. Gard. 78: 96–104.CrossRefGoogle Scholar
  422. —. 1991b. Leaf anatomy of Bruniaceae: Ecological, systematic and phylogenetic aspects. J. Linn. Soc., Bot. 107: 1–34.Google Scholar
  423. —. 1992a. Wood anatomy of Lamiaceae. A survey, with comments on vascular and vasicentric tracheids. Aliso 13: 309–338.Google Scholar
  424. —. 1992b. Wood anatomy of sympetalous dicotyledon families: A summary, with comments on systematic relationships and evolution of the woody habit. Ann. Missouri Bot. Gard. 79: 303–332.CrossRefGoogle Scholar
  425. —. 1992c. Wood anatomy of selected Cucurbitaceae and its relationship to habit and systematics. Nord. J. Bot. 12: 347–355.Google Scholar
  426. —. 1992d. Wood anatomy and stem ofChloranthus: Summary of wood anatomy of Chloranthaceae, with comments on relationships, vessellessness, and the origin of monocotyledons. IAWA Bull., n.s., 13: 3–16.Google Scholar
  427. —. 1992e. Wood anatomy ofHedyosmum (Chloranthaceae) and the tracheid-vessel element transition. Aliso 13: 447–462.Google Scholar
  428. —. 1992f. Vegetative anatomy and relationships of Eupomatiaceae. Bull. Torrey Bot. Club 119: 167–180.CrossRefGoogle Scholar
  429. —. 1992g. Pit membrane remnants in perforation plates of primitive dicotyledons and their significance. Amer. J. Bot. 79: 660–672.CrossRefGoogle Scholar
  430. —. 1993a. Wood and bark anatomy of Aristolochiaceae: Systematic and habitai correlations. IAWAJ. 14: 341–357.Google Scholar
  431. —. 1993b. Wood anatomy of Sabiaceae (s.l.): Ecological and systematic implications. Aliso 13: 521–549.Google Scholar
  432. —. 1995a. Wood anatomy of Caryophyllaceae: Ecological, habitai, systematic, and phylogenetic implications. Aliso 14: 1–17.Google Scholar
  433. —. 1995b. Wood and bark anatomy of Ranunculaceae (includingHydrastis) and Glaucidiaceae. Aliso 14: 65–84.Google Scholar
  434. —. 1995c. Wood anatomy of Berberidaceae: Ecological and phylogenetic considerations. Aliso 14: 85–103.Google Scholar
  435. —. 1995d. Wood anatomy of Ranunculiflorae: A summary.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 11–24. Springer-Verlag, Vienna, New York.Google Scholar
  436. —. 1996a. Wood and stem anatomy of Menispermaceae. Aliso 14(3): 155–170.Google Scholar
  437. —. 1996b. Wood anatomy of primitive angiosperms: New perspectives and syntheses. Pp. 68–90in D. W. Taylor & L. J. Hickey (eds.), Flowering plant origin, evolution & phylogeny. Chapman & Hall, New York.CrossRefGoogle Scholar
  438. —. 1996c. Wood anatomy of Akaniaceae and Bretschneideraceae: A case of near-identity and its systematic implications. Syst. Bot. 21: 607–616.CrossRefGoogle Scholar
  439. —. 1997a.Pentaphragma; a unique wood and its significance. IAWA J. 18: 3–12.Google Scholar
  440. —. 1997b. Wood anatomy of Buddlejaceae. Aliso 15: 41–56.Google Scholar
  441. —. 1998a. Wood anatomy of Resedaceae. Aliso 16: 127–135.Google Scholar
  442. —. 1998b. Wood anatomy of Portulacaceae and Hectorellaceae: Ecological, habitai, and systematic implications. Aliso 16: 137–153.Google Scholar
  443. —. 1998c. Wood and bark anatomy of Caricaceae: Correlations with systematics and habit. IAWA J. 19: 191–206.Google Scholar
  444. —. 1998d. Wood and stem anatomy ofPetiveria andRivina (Caryophyllales): Systematic implications. IAWA J. 19: 383–391.Google Scholar
  445. —. 1999a. Wood anatomy ofAgdestis (Caryophyllales): Systematic position and nature of the successive cambia. Aliso 18: 35–43.Google Scholar
  446. —. 1999b. Wood and bark anatomy of Schisandraceae: Implications for phylogeny, habit, and vessel evolution. Aliso 18: 45–55.Google Scholar
  447. —. 1999c. Wood and stem anatomy ofStegnosperma (Caryophyllales: Phylogenetic relationships; nature of lateral meristems and successive cambial activity. IAWA J. 20: 149–163.Google Scholar
  448. —. 1999d. Wood, stem, and root anatomy of Basellaceae with relation to habit, systematics, and cambial variants. Flora 194: 1–12.Google Scholar
  449. —. 2000a. Wood and stem anatomy ofSarcobatus (Caryophyllales): Systematic and ecological implications. Taxon 49: 27–34.CrossRefGoogle Scholar
  450. —. 2000b. Wood and Stem anatomy of phytolaccoid and rivinoid Phytolaccaceae (Caryophyllales): Ecology, systematics, and nature of successive cambia. Aliso 19: 13–29.Google Scholar
  451. —&C. J. Boggs. 1996. Wood anatomy of Plumbaginaceae. Bull. Torrey Bot. Club 123(2): 135–147.CrossRefGoogle Scholar
  452. —&L. DeBuhr. 1977. Wood anatomy of Penaeaceae (Myrtales): Comparative, phylogenetic, and ecological implications. J. Linn. Soc., Bot. 75: 211–227.Google Scholar
  453. —&M. DeVore. 1998. Wood anatomy of Calyceraceae: Ecology, habit, and systematic relationships. Amer. J. Bot. 85(6): 118 (abstract).Google Scholar
  454. —&C. J. Donald. 1996. Wood anatomy of Limnanthaceae and Tropaeolaceae in relation to habit and phylogeny. Sida 17: 333–342.Google Scholar
  455. —&V. M. Eckhart. 1984. Wood anatomy of Hydrophyllaceae, II. Genera other thanEriodictyon, with comments on parenchyma bands containing vessels with large pits. Aliso 10: 27–46.Google Scholar
  456. —&M. A. Hanson. 1991. Wood and stem anatomy of Convolvulaceae: A survey. Aliso 13: 51–94.Google Scholar
  457. —&D. A. Hoekman. 1985. Wood anatomy of Staphyleaceae: Ecology, statistical correlations, and systematics. Flora 177: 195–216.Google Scholar
  458. ——. 1986a. Wood anatomy of Gesneriaceae. Aliso 11: 279–297.Google Scholar
  459. ——. 1986b. Wood anatomy of Myoporaceae: Ecological and systematic considerations. Aliso 11: 317–334.Google Scholar
  460. —&R. B. Miller. 1999. Vegetative anatomy and relationships ofSetchellanthus caeruleus (Setchellanthaceae). Taxon 48: 289–302.CrossRefGoogle Scholar
  461. —&E. L. Schneider. 1996. Vessels inBrasenia andCabomba (Cabombaceae). Amer. J. Bot. 83(6): 144–145 (abstract).Google Scholar
  462. —&E. J. Wilson. 1995. Wood anatomy ofDrosophyllum (Droseraceae). Bull. Torrey Bot. Club 122: 185–189.CrossRefGoogle Scholar
  463. —&S. Zona. 1988a. Wood anatomy of Acanthaceae: A survey. Aliso 12: 201–227.Google Scholar
  464. ——. 1988b. Wood anatomy of Papaveraceae, with comments on vessel restriction patterns. IAWA Bull., n.s., 9: 253–267.Google Scholar
  465. —,V. M. Eckhart &D. C. Michener. 1984. Wood anatomy of Polemoniaceae. Aliso 10: 547–572.Google Scholar
  466. —,P. L. Morrell &S. R. Manchester. 1993. Wood anatomy of Sabiaceae (s.l.): Ecological and systematic implications. Aliso 13: 521–549.Google Scholar
  467. —,K. Dauer &S. Y. Nishimura. 1995. Wood and stem anatomy of Saururaceae with reference to ecology, phytogeny, and origin of the monocotyledons. IAWA J. 16: 133–150.Google Scholar
  468. Carolin, R. 1959. Floral structure and anatomy in the family Goodeniaceae Dumort. Proc. Linn. Soc. N.S.W. 84: 242–255.Google Scholar
  469. —. 1960a. Floral structure and anatomy in the family Stylidiaceae Swartz. Proc. Linn. Soc. N.S.W. 1960: 189–196.Google Scholar
  470. —. 1960b. The structures involved in the presentation of pollen to visiting insects in the order Campanales. Proc. Linn. Soc. N.S.W. 1960: 197–207.Google Scholar
  471. —. 1967. The concept of the inflorescence in the order Campanulales. Proc. Linn. Soc. N.S.W. 92: 7–26.Google Scholar
  472. —. 1978. The systematic relationships ofBrunonia. Brunonia 1: 9–29.CrossRefGoogle Scholar
  473. —. 1987. A review of the family Portulacaceae. Austral. J. Bot. 35: 383–412.CrossRefGoogle Scholar
  474. —. 1993. Portulacaceae. Pp. 544–555in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  475. Carpenter, C. S. &W. C. Dickison. 1976. The morphology and relationships ofOncotheca balansae. Bot. Gaz. 137: 141–153.CrossRefGoogle Scholar
  476. Carrion, J. S., M. J. Delgado &M. Garcia. 1993. Pollen grain morphology ofCoris (Primulaceae). Pl. Syst. & Evol. 184: 89–100.CrossRefGoogle Scholar
  477. Casper, S. J. 1963. “Systematisch massgebende” Merkmale für die Einordnung der Lentibulariaceen in das System. Oesterr. Bot. Z. 110: 108–131.CrossRefGoogle Scholar
  478. Cave, M. S., H. J. Arnott &S. A. Cook. 1961. Embryogeny in the California peonies with reference to their taxonomic position. Amer. J. Bot. 48: 397–404.CrossRefGoogle Scholar
  479. Chadefaud, M. 1974. Sur la formule florale de la Capucine (Tropaeolum majus L.) Bull. Bot. France 121: 347–355.Google Scholar
  480. Chadwell, T. B., S. J. Wagstaff &P. D. Cantine 1992. Pollen morphology ofPhryma and some putative relatives. Syst. Bot. 17: 210–219.CrossRefGoogle Scholar
  481. Chanda, S. 1965. The pollen morphology of Droseraceae with special reference to taxonomy. Pollen & Spores 7: 509–528.Google Scholar
  482. Chang, C-Y.1981. Morphology of the family Rhoipteleaceae in relation to its systematic position. Acta Phytotax. Sin. 19: 168–178. (In Chinese; summary in English.)Google Scholar
  483. Channell, R. B. &C. E. Wood. 1959. The genera of the Primulales of the southeastern United States. J. Arnold Arbor. 40: 268–288.Google Scholar
  484. ——. 1962. The Leitneriaceae in the southeastern United States. J. Arnold Arbor. 43: 435–438.Google Scholar
  485. ——. 1987. The Buxaceae in the southeastern United States. J. Arnold Arbor. 68: 241–257.Google Scholar
  486. Chao, C.-Y. 1954. Comparative pollen morphology of the Cornaceae and allies. Taiwania 5: 93–101.Google Scholar
  487. Chapman, J. L. 1987. Comparison of chloranthaceous pollen with the Cretaceous “Clavatipollenites complex”. Taxonomic implications for palaeopalynology. Pollen & Spores 29: 249–272.Google Scholar
  488. Chapman, M. 1936. Carpel anatomy of the Berberidaceae. Amer. J. Bot23: 340–348.CrossRefGoogle Scholar
  489. Chappill, J. A. 1995. Cladistic analysis of the Leguminosae: The development of an explicit phylogenetic hypothesis. Pp. 1–9in M. D. Crisp & J. J. Doyle (eds.), Advances in legume systematics. Part 7. Phylogeny. Royal Botanic Gardens, Kew.Google Scholar
  490. Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedén, B. S. Gaut, R. K. Jansen, K.J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eg-uiarte, E. Golenberg, G. H. Learn Jr.,S. W. Graham, S. C. H. Barrett, S. Dayanandan &V. A. Albert. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard. 80: 528–580.CrossRefGoogle Scholar
  491. —,M. D. Lledo, M. B. Crespo &S. M. Swensen. 1996. “When in doubt, put it in the Flacourtiaceae”: Molecular systematics of Flacourtiaceae. Amer. J. Bot. 83(6): 146 (abstract).Google Scholar
  492. —,C. M. Morton &J. A. Kallunki. 1999. Phylogenetic relationships of Rutaceae: A cladistic analysis of the subfamilies using evidence fromrbcL andatpB sequence variation. Amer. J. Bot. 86: 1191–1199.CrossRefGoogle Scholar
  493. Cheek, M. &A. Rakotozafy. 1991. The identity of Leroy’s fifth subfamily of the Meliaceae, and anew combination inCommiphora (Burseraceae). Taxon 40: 231–237.CrossRefGoogle Scholar
  494. Chen, Z.-D., A.-M. Lu &K.-Y. Pan. 1990. The embryology of the genusOstryopsis (Betulaceae). Cathaya 2: 53–62.Google Scholar
  495. —,S. R. Manchester &H.-Y. Sun. 1999. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany. Amer. J. Bot. 86: 1168–1181.CrossRefGoogle Scholar
  496. Chevalier, A. 1947. La famille des Huacaceae et ses affinités. Rev. Int. Bot. Appl. Agric. Trop. 27(No. 291-292): 26–29.Chiang, F. & D. Frame. 1987. The identity ofLithophytum (Loganiaceae, Plocospermeae). Brittonia 39: 260–262.Google Scholar
  497. Chirtoiü, M. 1918. Observations sur lesLacistema et la situation systématique de ce genre. Bull. Soc. Bot. Genève, sér. 2, 10: 317–349.Google Scholar
  498. Christensen, P. B. 1986. Pollen morphological studies in the Malvaceae. Grana 25: 95–117.Google Scholar
  499. Christophel, D. C., R. Kerrigan &A. I. Rowett. 1996. The use of cuticular features in the taxonomy of the Lauraceae. Ann. Missouri Bot. Gard. 83: 419–432.CrossRefGoogle Scholar
  500. Chuang, T. I. &R. Ornduff. 1992. Seed morphology and systematics of Menyanthaceae. Amer. J. Bot. 79: 1396–1406.CrossRefGoogle Scholar
  501. Chute, H. M. 1930. The morphology and anatomy of the achene. Amer. J. Bot. 17: 703–723.CrossRefGoogle Scholar
  502. Civeyrel, A. Le Thomas, K. Ferguson &M. W. Chase. 1998. Critical reexamination of palynological characters used to delimit Asclepiadaceae in comparison to the molecular phylogeny obtained from plastidmatK sequences. Molec. Phylogenet. & Evol. 9: 517–527.CrossRefGoogle Scholar
  503. Clarke, G. 1978. Pollen morphology and generic relationships in the Valerianaceae. Grana 17: 61–75.Google Scholar
  504. — &M. R. Jones. 1981. The northwest European pollen flora, 24. Cabombaceae. Rev. Paleobot. Palynol. 33: 51–55.CrossRefGoogle Scholar
  505. Clausing, G. &S. S. Renner. 2000. Phylogenetic relationships and character evolution in Melastomataceae. Amer. J. Bot. 87(6): 172–173 (abstract).Google Scholar
  506. Clement, J. S. &T. J. Mabry. 1996. Chloroplast DNA evidence and family-level relationships in the Caryophyllales. Amer. J. Bot. 83(6): 147 (abstract).Google Scholar
  507. Clevinger, C. C. &J. L. Panero. 1998. Phylogenetic relationships of North American Celastraceae based onndhF sequence data. Amer. J. Bot. 85(6): 120 (abstract).Google Scholar
  508. Clinckemaillie, D. &E. F. Smets. 1992. Floral similarities between Plumbaginaceae and Primulaceae: Systematic significance. Belg. J. Bot. 125: 151–153.Google Scholar
  509. Cocucci, A. E. 1965. Estudios en el géneroProsopanche (Hydnoraceae), I. Revisión taxonómica. Kurtziana 2: 53–74.Google Scholar
  510. —. 1975. Estudios en el géneroProsopanche (Hydnoraceae) II. Organización de la flor. Kurtziana 8: 7–15.Google Scholar
  511. —. 1983. New evidence from embryology in angiosperm classification. Nord. J. Bot. 3: 67–73.Google Scholar
  512. Coetzee, J. A. &J. Müller. 1984. The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Ann. Missouri Bot. Gard. 71: 1088–1099.CrossRefGoogle Scholar
  513. —&J. Praglowski. 1988. Winteraceae pollen from the Miocene of the southwestern Cape (South Africa). Grana 27: 27–37.Google Scholar
  514. Collinson, M. E. 1989. The fossil history of the Moraceae, Urticaceae (including Cecropiaceae) and Cannabaceae. Pp. 2: 319–339in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  515. Conard, J. S. 1905. The waterlilies. A monograph of the genusNymphaea. Publ. Carnegie Inst. Wash., 4. Carnegie Inst. Wash., Washington, DC.Google Scholar
  516. Conran, J. G. &A. Lowrie. 1993.Byblis liniflora subsp.occidentalis (Byblidaceae), a new subspecies from north-western Australia. Austral. Syst. Bot. 6: 175–179.CrossRefGoogle Scholar
  517. Constance, L. 1963. Chromosome number and classification in Hydrophyllaceae. Brittonia 15: 273–285.CrossRefGoogle Scholar
  518. —. 1964. Systematic botany: An unending synthesis. Taxon 13: 257–273.CrossRefGoogle Scholar
  519. Conti, E., A. Fischbach &K. J. Sytsma. 1993. Tribal relationships in Onagraceae: Implications fromrbcL sequence data. Ann. Missouri Bot. Gard. 80: 672–685.CrossRefGoogle Scholar
  520. —,K. J. Sytsma &W. S. Alverson. 1994. Neither oak nor alder, but nearly: The relationships ofTicodendron based onrbcL sequence data. Amer. J. Bot. 81(6): 149 (abstract).Google Scholar
  521. —,A. Litt &K. J. Sytsma. 1996. Circumscription of Myrtales and their relationships to other rosids: Evidence fromrbcL sequence data. Amer. J. Bot. 83: 221–233.CrossRefGoogle Scholar
  522. ——,P. G. Wilson, S. A. Graham, B. G. Briggs, L. A. S. Johnson &K. J. Sytsma. 1997. Interfamilial relationships in Myrtales: Molecular phylogeny and patterns of morphological evolution. Syst. Bot. 22: 629–647.CrossRefGoogle Scholar
  523. Contreras, V. R., R. Scogin, C. Philbrick &Novelo, R.. 1993. A phytochemical study of selected Podostemaceae: Systematic implications. Aliso 13: 513–520.Google Scholar
  524. Copeland, H. F. 1947. Structure and classification of the Pyroleae. Madroño 9: 65–102.Google Scholar
  525. —. 1953. Observations on the Cyrillaceae, particularly on the reproductive structures of the North American species. Phytomorphology 3: 405–411.Google Scholar
  526. —. 1955. The reproductive structures ofPistacia chinensis (Anacardiaceae). Phytomorphology 5: 440–449.Google Scholar
  527. Corner, E. J. H. 1946. Centrifugal stamens. J. Arnold Arbor. 27: 423–437.Google Scholar
  528. —1962. The classification of Moraceae. Gard. Bull. Singapore 19: 187–252.Google Scholar
  529. — 1976. The seeds of dicotyledons. 2 vols. Cambridge Univ. Press, Cambridge, England.Google Scholar
  530. Cornet, B. &D. Habib. 1992. Angiosperm-like pollen from the ammonite-dated Oxfordian (Upper Jurassic) of France. Rev. Paleobot. Palynol. 71: 269–294.CrossRefGoogle Scholar
  531. Cosner, M. E., R. K. Jansen &T. G. Lammers. 1994. Phylogenetic relationships in the Campanulales based onrbcL sequences. Pl. Syst. & Evol. 190: 79–95.CrossRefGoogle Scholar
  532. Crane, P. R. 1984. A re-evaluation of Cercidiphyllum-like plant fossils from the British early Tertiary. J. Linn. Soc., Bot. 89: 199–230.Google Scholar
  533. —1985. Phylogenetic analysis of seed plants and the origin of Angiosperms. Ann. Missouri Bot. Gard. 72: 716–793.CrossRefGoogle Scholar
  534. —. 1989a. Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Pl. Syst. & Evol. 162: 165–191.CrossRefGoogle Scholar
  535. —. 1989b. Early fossil history and evolution of the Betulaceae. Pp. 2: 87–116in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  536. —&S. Blackmore (eds.). 1989. Evolution, systematics, and fossil history of the Hamamelidae. 2 vols. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  537. —&S. Lidgard. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246: 675–678.PubMedCrossRefGoogle Scholar
  538. —&R. A. Stockey. 1986. Morphology and development of pistillate inflorescences in extant and fossil Cercidiphyllaceae. Ann. Missouri Bot. Gard. 73: 382–393.CrossRefGoogle Scholar
  539. —,E. M. Fräs &K. R. Pedersen. 1986. Lower Cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons. Science 23: 852–854.CrossRefGoogle Scholar
  540. —,S. R. Manchester &D. L. Dilcher. 1991. Reproductive and vegetative structure ofNordenskioldia (Trochodendraceae), a vesselless dicotyledon from the early Tertiary of the Northern Hemisphere. Amer. J. Bot. 78: 1311–1334.CrossRefGoogle Scholar
  541. —,K. R. Pedersen, E. M. Friis &A. N. Drinnan. 1993. Early Cretaceous (early to middle Albian) platanoid inflorescences associated withSapindopsis leaves from the Potomac Group of eastern North America. Syst. Bot. 18: 328–344.CrossRefGoogle Scholar
  542. —,E. M. Friis &K. R. Pedersen. 1995. The origin and early diversification of angiosperms. Nature 374: 27–33.CrossRefGoogle Scholar
  543. Cranwell, L. M. 1963. The Hectorellaceae: Pollen type and taxonomic speculation. Grana Palynol. 4: 195–202.Google Scholar
  544. Crawford, D. J., T. F. Stuessy &Silva, O.1986. Leaf flavonoid chemistry and the relationships of the Lactoridaceae. Plant Syst.Evol. 153: 133–139.CrossRefGoogle Scholar
  545. Crayn, D. M., E. S. Fernando, P. A. Gadek, &C. J. Quinn. 1995. A reassessment of the familial affinity of the Mexican genusRecchia Moçiño & Sessé ex DC. Brittonia 47: 397–402.CrossRefGoogle Scholar
  546. —,K. A. Kron, P. A. Gadek &C. J. Quinn. 1996. Delimitation of Epacridaceae: Preliminary molecular evidence. Ann. Bot. 77: 317–321.CrossRefGoogle Scholar
  547. Crepet, W. L. 1978. Dillenioid flowers from the Middle Eocene. Bot. Soc. Amer. Misc. Ser., Publ. 156: 78 (abstract).Google Scholar
  548. —. 1981. The status of certain families of the Amentiferae during the Middle Eocene and some hypotheses regarding the evolution of wind pollination in dicotyledonous angiosperms. Pp. 2: 103–128in K. J. Niklas (ed.), Paleobotany, paleoecology, and evolution. Praeger, New York.Google Scholar
  549. —. 1989. History and implications of the early North American fossil record of Fagaceae. Pp. 2: 45–66in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  550. —&E. M. Friis. 1987. The evolution of insect pollen Pp. 181–201in E. M. Friis, W. G. Chaloner & P. R. Crane (eds.), The origins of angiosperms and their biological consequences. Cambridge Univ. Press, Cambridge, England.Google Scholar
  551. —&K. C. Nixon. 1989. Earliest megafossil evidence of Fagaceae: Phylogenetic and biogeographic implications. Amer. J. Bot. 76: 842–855.CrossRefGoogle Scholar
  552. ——. 1994. Flowers of Turonian Magnoliidae and their implications.In P. K. Endress & E. M. Friis (eds.), Early evolution of flowers. Pl. Syst. & Evol., Suppl. 8: 73–91. Springer-Verlag, Vienna.Google Scholar
  553. ——. 1996. Turonian (Cretaceous) flowers of the Theales. Amer. J. Bot. 83(6): 148–149 (abstract).Google Scholar
  554. ——. 1998a. Fossil Clusiaceae from the Late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollination. Amer. J. Bot. 85: 1122–1133.CrossRefGoogle Scholar
  555. ——. 1998b. Two new fossil flowers of magnoliid affinity from the Late Cretaceous of New Jersey. Amer. J. Bot. 85: 1273–1288.CrossRefGoogle Scholar
  556. —&D. W. Taylor. 1985. The diversification of the Leguminosae: First fossil evidence of the Mimosoideae and Papilionoideae. Science 228: 1087–1089.PubMedCrossRefGoogle Scholar
  557. ——. 1986. Primitive mimosoid flowers from the Paleocene-Eocene and their systematic and evolutionary implications. Amer. J. Bot. 73: 548–563.CrossRefGoogle Scholar
  558. —,K. C. Nixon, E. M. Friis &J. V. Freudenstein. 1992. Oldest fossil flowers of hamamelidaceous affinity, from the Late Cretaceous of New Jersey. Proc. Natl. Acad. U.S.A. 89: 8986–8989.CrossRefGoogle Scholar
  559. Crescns, E. M. &E. F. Smets. 1992. On the character “carpel-form.” Trends in the development of the Magnoliatae pistil. Candollea 47: 373–390.Google Scholar
  560. Crins, W. J. 1989. The Tamaricaceae in the southeastern United States. J. Arnold Arbor. 70: 403–425.Google Scholar
  561. Crisp, M. &J. J. Doyle (eds.). 1995. Advances in legume systematics. Part 7. Phylogeny. Royal Botanic Gardens, Kew.Google Scholar
  562. Croizat, L. 1947a. A study in the Celastraceae. Siphonodonoideaesubf. nov. Lilloa 13: 31–43.Google Scholar
  563. —. 1947b.Trochodendron, Tetracentron, and their meaning in phylogeny. Bull. Torrey Bot. Club 74: 60–76.CrossRefGoogle Scholar
  564. Cronquist, A. 1968. The evolution and classification of flowering plants. London.Google Scholar
  565. —. 1981. An integrated system of classification of flowering plants. Columbia Univ. Press, New York.Google Scholar
  566. —. 1988. The evolution and classification of flowering plants. Ed. 2. New York Bot. Gard., Bronx.Google Scholar
  567. —&R. F. Thorne. 1994. Nomenclatural and taxonomic history. Pp. 5–25in H.-D. Behnke & T. J. Mabry (eds.), Caryophyllales: Evolution and systematics. Springer-Verlag, Berlin.Google Scholar
  568. Cuatrecasas, J. 1961. A taxonomic revision of the Humiriaceae. U.S. Natl. Herb. Contr. 35(2): 25–214.Google Scholar
  569. —. 1970. Brunelliaceae. Fl. Neotrop. Monogr. 2. Hafner, Darien, CT.Google Scholar
  570. Cuénoud, P., M. A. Del Pero-Martinez, P.-A. Loizeau, R. Spichiger, S. Andrews &J.-F. Manen. 2000. Molecular phylogeny and biogeography of the genusIlex (Aquifoliaceae). Ann. Bot. 85: 111–122.CrossRefGoogle Scholar
  571. Cuerrier, A., L. Brouillet &D. Barabe. 1998. Numerical and comparative analyses of the modern systems of classification of the flowering plants. Bot. Rev. (Lancaster) 64: 323–355.Google Scholar
  572. Cullings, K. W. &T. D. Bruns. 1992. Phylogenetic origin of the Monotropoideae inferred from a partial 28S ribosomal RNA gene sequences. Canad. J. Bot. 70: 1703–1708.Google Scholar
  573. —&L. Hileman. 1997. The Monotropoideae is [are] a monophyletic sister group to the Arbutoideae (Ericaceae): A molecular test of Copeland’s hypothesis. Madroño 44: 297–304.Google Scholar
  574. Cusset, G. &C. Cusset. 1988. Etudes sur les Podostemopsida. 11. Repartition et evolution des Tristichaceae. Bull. Mus. Hist. Nat. (Paris), ser. 4, 10, B(3): 223–262.Google Scholar
  575. Czaja, A. T. 1978. Structure of starch grains and classification of vascular plant families. Taxon 27: 463–470.CrossRefGoogle Scholar
  576. Dahl, A. 1987. Biosystematics ofHypecoum. Abstr. XIV Int. Bot. Congr., Berlin, 5–21–2.Google Scholar
  577. Dahl, A. O.1952. The comparative morphology of the Icacinaceae, VI. The pollen. J. Arnold Arbor. 33: 252–295.Google Scholar
  578. —&J. R. Rowley. 1965. Pollen ofDegeneria vitiensis. J. Arnold Arbor. 46: 308–323.Google Scholar
  579. Dahlgren, G. 1989a. The last Dahlgrenogram: System of classification of the dicotyledons. Pp. 249–260inK. Tan, R. R. Mill & T. S. Elias (eds.), Plant taxonomy, phytogeography and related subjects. Edinburgh Univ. Press, Edinburgh.Google Scholar
  580. —. 1989b. An updated angiosperm classification. J. Linn. Soc., Bot. 100: 197–203.CrossRefGoogle Scholar
  581. —. 1991. Steps toward a natural system of the dicotyledons: Embryological characters. Aliso 13: 107–165.Google Scholar
  582. Dahlgren, K. V. O. 1916. Zytologische und embryologische Studien über die Reihen Primulales und Plumbaginales. Kongl. Svenska Vetenskapsakad. Handl. 56(4): 1–80.Google Scholar
  583. Dahlgren, R. M. T. 1967–1971. Studies on Penaeaceae. Respective parts published in Opera Bot. as follows: I. Systematics and gross morphology of the genusStylapterus A. Juss., 15: 1–40; II. The generaBrachysiphon, Sonderothamnus andSaltera, 18: 1–72; VI. the genusPenaea, 29: 1–58.Google Scholar
  584. —. 1975a. A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Bot. Not. 128: 119–147.Google Scholar
  585. —. 1975b. The distribution of characters within an angiosperm system, I. Some embryological characters. Bot. Not. 128: 181–197.Google Scholar
  586. —. 1977a. A commentary on a diagrammatic presentation of the angiosperms in relation to the distribution of character states.In K. Kubitzki (ed.), Flowering plants: Evolution and classification of higher categories, Symposium, Hamburg, September 8–12, 1976. Pl. Syst. & Evol., Suppl. 1: 253–283. Springer-Verlag, Vienna.Google Scholar
  587. —. 1977b. A note on the taxonomy of the “Sympetalae” and related groups. Publ. Cairo Univ. Herb. 7 & 8: 83–102.Google Scholar
  588. —. 1979. Gross-taxonomical evaluations in the angiosperms in relation to parasitism. Symb. Bot. Upsal. 22(4): 210–221.Google Scholar
  589. —1980. A revised system of classification of the angiosperms. J. Linn. Soc., Bot. 80: 91–124.Google Scholar
  590. —. 1983. The importance of modern serological research for angiosperm classification. Pp. 371–394in U. Jensen and D. E. Fairbrothers (eds.), Proteins and nucleic acids in plant systematics. Springer-Verlag, New York.Google Scholar
  591. —. 1988. Rhizophoraceae and Anisophylleaceae: Summary statement, relationships. Ann. Missouri Bot. Gard. 75: 1259–1277.CrossRefGoogle Scholar
  592. —&K. Bremer. 1985. Major clades of the angiosperms. Cladistics 1: 349–368.CrossRefGoogle Scholar
  593. —&V. S. Rao. 1969. A study of the family Geissolomataceae. Bot. Not. 122: 207–227.Google Scholar
  594. ——. 1971. The genusOftia Adans. and its systematic position. Bot. Not. 124: 451–472.Google Scholar
  595. —&R. F. Thorne. 1984. The order Myrtales: Circumscription, variation, and relationships. Ann. Missouri Bot. Gard. 71: 633–699.CrossRefGoogle Scholar
  596. —&A. E. van Wyk. 1988. Structures and relationships of families endemic to or centered in southern Africa. Pp. 1–94in P. Goldblatt & P. P. Lowry II (eds.), Modern systematic studies in African botany: Proceedings of the Eleventh Plenary Meeting of the Association for the Taxonomic Study of the Flora of Tropical Africa, Missouri Botanical Garden, St. Louis, June 10–14,1985. Monogr. Syst. Bot., 25. Missouri Bot. Gard., St. Louis.Google Scholar
  597. —,S. Rosendal-Jensen &B. J. Nielsen. 1976. Iridoid compounds in Fouqueriaceae and notes on its possible affinities. Bot. Not. 129: 207–212.Google Scholar
  598. ———. 1977. Seedling morphology and iridoid occurrence inMontinia caryophyllacea (Montiniaceae). Bot. Not. 130: 329–332.Google Scholar
  599. —,B. J. Nielson, P. Goldblatt &J. P. Rourke. 1979. Further notes on Retziaceae: Its chemical contents and affinities. Ann. Missouri Bot. Gard. 66: 545–556.CrossRefGoogle Scholar
  600. —,S. Rosendal-Jensen &B. J. Nielsen. 1981. A revised classification of the angiosperms with comments on correlation between chemical and other characters. Pp. 149–204in D. A. Young & D. S. Seigler (eds.), Phytochemistry and angiosperm phylogeny. Praeger Sci., New York.Google Scholar
  601. Dahling, G. V. 1978. Systematics and evolution ofGarrya. Contr. Gray Herb. 209: 1–104.Google Scholar
  602. D’Arcy, W. G. 1979a. Family 73A. Capparaceae-Tovarioideae.In Flora of Panama. Ann. Missouri Bot. Gard. 66: 117–121.CrossRefGoogle Scholar
  603. —. 1979b. The classification of the Solanaceae. Pp. 3–47in J. G. Hawkes, R. N. Lester & A. D. Skelding (eds.), The biology and taxonomy of the Solanaceae. Linn. Soc. London Sym. Ser., 7. Acad. Press, London.Google Scholar
  604. —&K. C. Keating (eds.). 1996. The anther: Form, function and phylogeny. Cambridge Univ. Press, Cambridge, England.Google Scholar
  605. Das, M. F., G. F. Da Silva, O. R. Gottlieb &D. L. Dreyer. 1984. Evolution of liminoids in the Meliaceae. Biochem. Syst. Evol. 12: 299–310.CrossRefGoogle Scholar
  606. Dathan, A. S. R. &D. Singh. 1971. Embryology and seed development inBergia L. J. Indian Bot. Soc. 59: 362–370.Google Scholar
  607. ——. 1972. Development of embryo sac and seed ofBixa L. andCochlospermum Kunth. J. Indian Bot. Soc. 61: 254–266.Google Scholar
  608. Davidson, C. 1973. An anatomical and morphological study of Datiscaceae. Aliso 8: 49–110.Google Scholar
  609. —. 1976. Anatomy of xylem and phloem of the Datiscaceae. Los Angles Co. Mus. Contr. Sci. 280: 1–28.Google Scholar
  610. Davis, G. L. 1966. Systematic embryology of the angiosperms. J. Wiley, New York.Google Scholar
  611. Day, A. G. &R. Moran. 1986.Acanthogilia, a new genus of Polemoniaceae from Baja California, Mexico. Proc. Calif. Acad. Sci. 44: 111–126.Google Scholar
  612. Dayanandan, S., P. S. Ashton, S. M. Williams &R. B. Primack. 1999. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplastrbcL gene. Amer. J. Bot. 86: 1182–1190.CrossRefGoogle Scholar
  613. DeBuhr, L. E. 1973. Distribution and reproductive biology ofDarlingtonia californica. M.A. thesis, Claremont Graduate School, Claremont, CA.Google Scholar
  614. —. 1975. Phylogenetic relationships of the Sarraceniaceae. Taxon 24: 297–306.CrossRefGoogle Scholar
  615. —. 1977. Wood anatomy of the Sarraceniaceae; ecological and evolutionary implications. Plant Syst. Evol. 128: 159–169.CrossRefGoogle Scholar
  616. —. 1978. Wood anatomy ofForsellesia (Glossopetalon) andCrossosoma (Crossosomataceae, Rosales). Aliso 9: 179–184.Google Scholar
  617. Dehay, C. 1938. Les affinités entre les Euphorbiales, les Morales et les Malvales, d’après l’appareil libéro-ligneux foliare. Bull. Soc. Bot. France 85: 23–31.Google Scholar
  618. —. 1951. Caractères anatomique des Huacacées. Bull. Soc. Bot. N. France 4: 14–18.Google Scholar
  619. Delevoryas, T. &J. E. Mickle. 1995. Upper Cretaceous magnoliaceous fruit from British Columbia. Amer. J. Bot. 82: 763–768.CrossRefGoogle Scholar
  620. Demeter, K. 1922. Vergleichende Asclepiadeenstudien. Flora 115: 130–176.Google Scholar
  621. Denton, D. S. &J. F. Smith. 1996. Familial placement ofCyrtandomoea, Titanotrichum, andSanango: Three problematic genera of the Lamiales. Amer. J. Bot. 83(6): 151 (abstract).Google Scholar
  622. De Queiroz, K. &J. Gauthier. 1992. Phylogenetic taxonomy. Ann. Rev. Ecol. Syst. 23: 449–480.Google Scholar
  623. Deroin, T. 1997. Confirmation and origin of the paracarpy in Annonaceae, with comments on some methodological aspects. Candollea 52: 45–58.Google Scholar
  624. Dethier, V. G. 1947. Chemical insect attractants and repellents. Blakiston Co., Philadelphia & Toronto.Google Scholar
  625. Détienne, P. 1991. Anatomie du bois deBalgoya pacifica (Polygalaceae) de Nouvelle-Calédonie. Adansonia, ser. 4, 13: 17–20.Google Scholar
  626. Dettmann, M. E. &D. M. Jarzen. 1990. The Antarctic rift valley: Late Cretaceous cradle of northeastern Australasian relicts? Rev. Paleobot. Palynol. 65: 131–144.CrossRefGoogle Scholar
  627. ——. 1991. Pollen evidence for Late Cretaceous differentiation of Proteaceae in southern polar forests. Canad. J. Bot. 69: 901–906.CrossRefGoogle Scholar
  628. Devi, D. R. &L. L. Narayana. 1990. Systematic position ofAverrhoa (Oxalidaceae). Feddes Repert. 101: 165–170.Google Scholar
  629. ——. 1994. Floral anatomy of Tropaeolaceae. Feddes Repert. 105: 437–443.Google Scholar
  630. DeVore, M. L. &T. F. Stuessy. 1995. The place and time of origin of the Asteraceae, with additional comments on the Calyceraceae and Goodeniaceae. Pp. 23–40in C. J. N. Hind, C. J. Jeffrey & G. V. Pope (eds.), Advances in Compositae systematics. Royal Botanic Gardens, Kew.Google Scholar
  631. —,Z. Zhao, J. Skvarla &R. Jansen. 1997. Pollen morphology and ultrastructure of Calyceraceae. Amer. J. Bot. 84(6): 185–186(abstract).Google Scholar
  632. Diboll, A. G. 1959. Comparative anatomy of staminate catkins of Myricaceae. M.A. thesis, Claremont Grad. School, Claremont, CA.Google Scholar
  633. Dickie, S. L. &R. S. Wallace. 1996. Phylogeny of the subfamily Opuntioideae (Cactaceae) based on chloroplast DNA non-coding regions. Amer. J. Bot. 83(6): 151 (abstract).Google Scholar
  634. Dickison, W. C. 1967–197la. Comparative morphological studies in Dilleniaceae. Respective parts published in J. Arnold Arbor, as follows: I. Wood anatomy, 48: 1–29; II. The pollen, 48: 231–240; III. The carpels, 49: 317–329; IV. Anatomy of the node and vascularization of the leaf, 50: 384–400; V. Leaf anatomy, 51: 89–113; VI. Stamens and young stem, 51: 403–18; VII. Additional notes onAcrotrema, 52: 319–333.Google Scholar
  635. —. 1971b-1973. Anatomical studies in the Connaraceae. Respective parts published in J. Elisha Mitchell Sci. Soc. as follows: I. Carpels, 87: 77–86; II. Wood anatomy, 88:120–136; III. Leaf anatomy, 89: 121–138; IV. The bark and young stem, 89: 166–171.Google Scholar
  636. —. 1972b. Observations on the floral morphology of some species ofSaurauia, Actinidia andClematoclethra. J. Elisha Mitchell Sci. Soc. 88: 43–54.Google Scholar
  637. —. 1975a. Floral morphology and anatomy ofBauern. Phytomorphology 25: 69–76.Google Scholar
  638. —. 1975b. Leaf anatomy of Cunoniaceae. J. Linn. Soc., Bot. 71: 275–294.CrossRefGoogle Scholar
  639. —. 1975c. Studies on the floral anatomy of the Cunoniaceae. Amer. J. Bot. 62: 433–447.CrossRefGoogle Scholar
  640. —. 1976. The bases of angiosperm phylogeny: Vegetative anatomy. Ann. Missouri Bot. Gard. 62: 590–620.CrossRefGoogle Scholar
  641. —. 1978. Comparative anatomy of Eucryphiaceae. Amer. J. Bot. 65: 722–735.CrossRefGoogle Scholar
  642. —. 1979. A survey of pollen morphology of the Connaraceae. Pollen & Spores 21: 31–79.Google Scholar
  643. —. 1980a. Diverse nodal anatomy of the Cunoniaceae. Amer. J. Bot. 67: 975–981.CrossRefGoogle Scholar
  644. —. 1980b. Comparative wood anatomy and evolution of the Cunoniaceae. Allertonia 2(5): 281–321.Google Scholar
  645. —. 1981a. Contributions to the morphology and anatomy ofStrasburgeria and a discussion of the taxonomic position of the Strasburgeriaceae. Brittonia 33: 564–580.CrossRefGoogle Scholar
  646. —. 1981b. The evolutionary relationships of the Leguminosae. Pp. 35–54in R. M. Polhill & P. H. Raven (eds.), Advances in legume systematics: Proceedings of the International Legume Conference, Kew, 24–29 July 1978. Royal Botanic Gardens, Kew.Google Scholar
  647. —. 1982 Vegetative anatomy ofOncotheca macrocarpa: A newly described species of Oncothecaceae. Bull. Mus. Hist. Nat. (Paris) sér. 4, sect. B., Adansonia 3(4): 177–181.Google Scholar
  648. —. 1984 Fruits and seeds of the Cunoniaceae. J. Arnold Arbor. 65: 149–190.Google Scholar
  649. —. 1986a Floral morphology and anatomy of Staphyleaceae. Bot. Gaz. 147: 312–326.CrossRefGoogle Scholar
  650. —. 1986b Further observations on the floral anatomy and pollen morphology ofOncotheca (Oncothecaceae). Brittonia 38: 249–259.CrossRefGoogle Scholar
  651. —. 1986c Wood anatomy and affinities of the Alseuosmiaceae. Syst. Bot. 11: 214–221.CrossRefGoogle Scholar
  652. —. 1987a A palynological study of the Staphyleaceae. Grana 26: 11–24.Google Scholar
  653. —. 1987b Leaf and nodal anatomy and systematics of Staphyleaceae. Bot. Gaz. 148: 475–489.CrossRefGoogle Scholar
  654. —. 1988 Xylem anatomy ofDiegodendron humbertii. IAWA Bull., n.s., 9: 332–336.Google Scholar
  655. —. 1989a. Comparisons of primitive Rosidae and Hamamelidae. Pp. 1: 47–73in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  656. —. 1989b Steps toward the natural system of the dicotyledons: Vegetative anatomy. Aliso 12: 555–566.Google Scholar
  657. —. 1989c Stem and leaf anatomy of the Alseuosmiaceae. Aliso 12: 567–578.Google Scholar
  658. —. 1990a The morphology and relationships ofMedusagyne (Medusagynaceae). Pl. Syst. & Evol. 171: 27–55.CrossRefGoogle Scholar
  659. —. 1990b An additional note on the floral morphology and affinities ofMedusagyne oppositifolia (Medusagynaceae). Brittonia 42: 191–196.CrossRefGoogle Scholar
  660. —. 1990c A study of the floral morphology and anatomy of the Caryocaraceae. Bull. Torrey Bot. Club 117: 123–137.CrossRefGoogle Scholar
  661. —. 1992 Morphology and anatomy of the flower and pollen ofSaruma henryi Oliv., a phylogenetic relict of the Aristolochiaceae. Bull. Torrey Bot. Club 119: 392–400.CrossRefGoogle Scholar
  662. —. 1993 Floral anatomy of the Styracaceae, including observations on intra-ovarian trichomes. J. Linn. Soc., Bot. 112: 223–255.CrossRefGoogle Scholar
  663. —. 1994 A re-examination ofSanango racemosum, 2. Vegetative and floral anatomy. Taxon 43: 601–618.CrossRefGoogle Scholar
  664. — &P. Baas. 1977 The morphology and relationships ofParacryphia (Paracryphiaceae). Blumea 23: 417–438.Google Scholar
  665. — &P. K. Endress. 1983 Ontogeny of the stem-node-leaf vascular continuum ofAustrobaileya. Amer. J. Bot. 70: 906–911.CrossRefGoogle Scholar
  666. — &K. D. Phend. 1985 Wood anatomy of the Styracaceae: Evolutionary and ecological considerations. IAWA Bull., n.s., 6: 3–22.Google Scholar
  667. — &R. Rutishauser. 1990 Developmental morphology of stipules and systematics of the Cunoniaceae and presumed allies, II. Taxa without interpetiolar stipules and conclusions. Bot. Helvet. 100: 75–95.Google Scholar
  668. — &E. M. Sweitzer. 1970 The morphology and relationships ofBarbeya oleoides. Amer. J. Bot. 57: 468–476.CrossRefGoogle Scholar
  669. — &A. L. Weitzman. 1996 Comparative anatomy of the young stem, node, and leaf of Bonnetiaceae, including observations on a foliar endodermis. Amer. J. Bot. 83: 405–418.CrossRefGoogle Scholar
  670. —,J. W. Nowicke &J. J. Skvarla. 1982 Pollen morphology of the Dilleniaceae and Actinidiaceae. Amer. J. Bot. 69: 1055–1073.CrossRefGoogle Scholar
  671. —,M. H. Hils, T. W. Lucansky &W. L. Stem. 1994 Comparative anatomy and systematics of woody Saxifragaceae.Aphanopetalum Engl. J. Linn. Soc., Bot. 114: 167–182.CrossRefGoogle Scholar
  672. Dickson, E. E., K. Arumuganathan, S. Kresovich &J. J. Doyle. 1992 Nuclear DNA content variation within the Rosaceae. Amer. J. Bot. 79: 1081–1086.CrossRefGoogle Scholar
  673. DiFulvio, T. E. 1971 Morfología floral deNolana paradoxa (Nolanaceae), con especial referencia a la organización del gineceo. Kurtziana 6: 41–51.Google Scholar
  674. —. 1975 Estomatogenesis enHalophytum ameghinoi (Halophytaceae). Kurtziana 8: 17–29.Google Scholar
  675. —. 1979 El endosperma y el embrion en el sistema de Tubiflorae, con especial referencia a Boraginaceae e Hydrophyllaceae. Kurtziana 12-13: 101–112.Google Scholar
  676. Dilcher, D. L., D. C. Christophel, H. O. Bhagwandin Jr. &L. J. Scriven. 1990 Evolution of the Casuarinaceae: Morphological comparisons of some extant species. Amer. J. Bot. 77: 338–355.CrossRefGoogle Scholar
  677. Dillon, M. O. &M. Muñoz-Schick. 1993 A revision of the dioecious genusGriselinia (Griseliniaceae), including a new species from the coastal Atacama Desert of northern Chile. Brittonia 45: 261–274.CrossRefGoogle Scholar
  678. —,A. D. Hanson &D. A. Gage. 1996 Osmoprotective compounds and phylogeny of the Plumbaginaceae. Amer. J. Bot. 83(6): 131–132 (abstract).Google Scholar
  679. Ditsch, F. &W. Barthlott. 1994. Mikromorphologie der Epicuticularwachse und die Systematik der Dilleniales, Lecythidales, Malvales, and Theales. Akad. Wiss. Abh. Math. Naturwiss. Kl. F. Steiner, Stuttgart.Google Scholar
  680. -&-. 1997. Mikromorpholgie der Epicuticularwachse und das System der Dilleniidae und Rosidae. Akad. Wiss. Mainz, Abh. Math.-Naturwiss. Kl.Google Scholar
  681. —,H. Patha &W. Barthlott. 1995 Micromorpholgy of epicuticular waxes in Fabaless.l. and its systematic significance. Beitr. Biol. Pflanzen 68: 297–310.Google Scholar
  682. Domin, K. 1922 Byblidaceae, a new archichlamydeous family. Acta Bot. Bohem. 1: 3–4.Google Scholar
  683. Domke, W. 1934 Untersuchungen über die systematische und geographische Gliederung der Thymelaeaceen nebst einer Neubeschreibung ihrer Gattungen. Bibl. Bot. Stuttgart 111: 1–151.Google Scholar
  684. Donoghue, M. J. 1981 The cladistic relationships ofViburnum: Equivocal out-groups and a robust hypothesis. Amer. J. Bot. Misc. Ser. Publ. 160: 67–68 (abstract).Google Scholar
  685. —. 1983. The phylogenetic relationships ofViburnum. Pp. 2: 143–166in N. I. Platnick & V. A. Funk (eds.), Advances in cladistics: Proceedings of the second meeting of the Willi Hennig Society. Columbia Univ. Press, New York.Google Scholar
  686. —. 1985 Pollen diversity and exine evolution inViburnum and the Caprifoliaceaesensu lato. J. Arnold Arbor. 66: 421–469.Google Scholar
  687. — &W. S. Alverson. 2000 A new age of discovery. Ann. Missouri Bot. Gard. 87: 110–126.CrossRefGoogle Scholar
  688. — &P. D. Cantino. 1988 Paraphyly, ancestors, and the goals of taxonomy: A botanical defense of cladism. Bot. Rev. (Lancaster) 54: 107–128.Google Scholar
  689. — &J. A. Doyle. 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. Pp. 1:17-45in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  690. —,R. G. Olmstead, J. F. Smith &J. D. Palmer. 1992 Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.CrossRefGoogle Scholar
  691. Dorr, L. J. 1994 The identity and neotypification ofEndosteira Turcz. (Rhizophoraceae). Taxon 43: 639–640.CrossRefGoogle Scholar
  692. Douglas, A. W. &B. P. M. Hyland. 1995. Subfamily III. Eidotheoideae (withEidothea zoexglocarya). Pp. 127–129in P. McCarthy & A. E. Orchard (eds.), Flora of Australia. Vol. 16. Elaeagnaceae and Proteaceae. CSIRO, Melbourne.Google Scholar
  693. — &S. C. Tucker. 1996 Comparative floral ontogenies among Persoonioideae includingBellendena (Proteaceae). Amer. J. Bot. 83: 1528–1555.CrossRefGoogle Scholar
  694. Downie, S. R. &D. S. Katz-Downie. 1996 A molecular phylogeny of Apiaceae subfamily Apioideae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot. 83: 234–251.CrossRefGoogle Scholar
  695. ——. 1999 Phylogenetic analysis of chloroplastrps 16 intron sequences reveals relationships within the woody southern African Apiaceae subfamily Apioideae. Canad. J. Bot 77: 1120–1135.CrossRefGoogle Scholar
  696. ——. 1990 Chloroplast DNA evidence for phylogenetic relationships in the Asteridae. Amer. J. Bot. (Suppl.) 77(6): 112 (abstract).Google Scholar
  697. ——. 1992 Restriction site mapping of the chloroplast DNA inverted repeat: A molecular phylogeny of the Asteridae. Ann. Missouri Bot. Gard. 79: 266–283.CrossRefGoogle Scholar
  698. ——. 1994a. Phylogenetic relationships using restriction site variation of the chloroplast DNA inverted repeat. Pp. 223–233in H.-D. Behnke & T. J. Mabry (eds.), Caryophyllales: Evolution and systematics. Springer-Verlag, Berlin.Google Scholar
  699. ——. 1994b A chloroplast DNA phylogeny of the Caryophyllales based on structural and inverted repeat restriction site variation. Syst. Bot. 19: 236–252.CrossRefGoogle Scholar
  700. —,D. S. Katz-Downie &K.-J. Cho. 1997 Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. Amer. J. Bot. 84: 253–273.CrossRefGoogle Scholar
  701. —,S. Ramanath, D. S. Katz-Downie &E. Llanas. 1998 Molecular systematics of Apiaceae subfamily Apioideae: Phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer and plastidrpoC1 intron sequences. Amer. J. Bot. 85: 563–591.CrossRefGoogle Scholar
  702. —,D. S. Katz-Downie &M. F. Watson. 2000 A phytogeny of the flowering plant family Apiaceae based on chloroplast DNA RPL16 and RPOC1 intron sequences: Towards a suprageneric classification of subfamily Apioideae. Amer. J. Bot. 87: 273–292.CrossRefGoogle Scholar
  703. Doyle, J. A. 1969 Cretaceous angiosperm pollen of the Atlantic coastal plain and its evolutionary significance. J. Arnold Arbor. 50: 1–35.Google Scholar
  704. —. 1978 Origin of angiosperms. Ann. Rev. Ecol. Syst. 9: 365.CrossRefGoogle Scholar
  705. —. 1996 Seed plant phylogeny and the relationships of Gnetales. Int. J. Pl. Sci. 157(6 Suppl.): S3-S39.CrossRefGoogle Scholar
  706. —. 1998a Phylogeny of vascular plants. Ann. Rev. Ecol. Syst. 29: 567–599.CrossRefGoogle Scholar
  707. —. 1998b Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Molec. Phylogenet. & Evol. 9: 448–462.CrossRefGoogle Scholar
  708. — &A. Le Thomas. 1996a Phylogeny and geographic history of Annonaceae. Geog. Phys. Quat. 51: 353–361.Google Scholar
  709. ——. 1996b Phylogenetic analysis and character evolution in Annonaceae. Bull. Mus. Hist. Nat. (Paris), 4 sér. 18, sect. B, Adansonia 3-4: 279–334.Google Scholar
  710. — &M. J. Sanderson. 1997 Fossils, molecular clocks, and the age of angiosperms. Amer. J. Bot. 84(6): 132 (abstract).Google Scholar
  711. —,C. L. Hotton &J. V. Ward. 1990 Early Cretaceous tetrads, zonasulculate pollen, and Winteraceae. Respective parts published in Amer. J. Bot. as follows, I. Taxonomy, morphology, and ultrastructure, 77: 1544–1557; II. Cladistic analysis and implications, 77:1558-1568.Google Scholar
  712. —,M. J. Donoghue &E. A. Zimmer. 1994 Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann. Missouri Bot. Gard. 81: 419–450.CrossRefGoogle Scholar
  713. Doyle, J. J. 1992 Gene trees and species trees: Molecular systematics as one-character taxonomy. Syst. Bot. 17: 144–163.CrossRefGoogle Scholar
  714. —. 1995. DNA data and legume phylogeny: A progress report. Pp. 11–30in M. Crisp & J. J. Doyle (eds.), Advances in legume systematics. Part 7. Phylogeny. Royal Botanic Gardens, Kew.Google Scholar
  715. —,J. L. Doyle, J. A. Ballenger &J. D. Palmer. 1996 The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Molec. Phylogenet. & Evol. 5: 429–438.CrossRefGoogle Scholar
  716. ———,E. E. Dickson, T. Kajita &H. Ohashi. 1997 A phylogeny of the chloroplast generbcL in the Leguminosae: Taxonomic correlations and insights into the evolution of nodulation. Amer. J. Bot. 84: 541–554.CrossRefGoogle Scholar
  717. Doyle, M. F. &R. Scogin. 1988a A comparative phytochemical profile of the Gunneraceae. New Zealand J. Bot. 26: 493–496.Google Scholar
  718. ——. 1988b Leaf phenolics ofGunnera manicata (Gunneraceae). Aliso 12: 77–80.Google Scholar
  719. Dreyer, D. L. 1966 Citrus bitter principles, V. Botanical distribution and chemotaxonomy in the Rutaceae. Phytochemistry 5: 367–378.CrossRefGoogle Scholar
  720. Drinnan, A. N., P. R. Crane, E. M. Friis &K. R. Pedersen. 1990 Lauraceous flowers from the Potomac Group (Mid-Cretaceous) of eastern North America. Bot. Gaz. 151: 370–384.CrossRefGoogle Scholar
  721. ————. 1991 Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (Mid-Cretaceous) of eastern North America. Amer. J. Bot. 78: 153–176.CrossRefGoogle Scholar
  722. -,-& S. Hoot. 1993. Paleobotanical and floral developmental insights into the early diversification of nonmagnoliid dicotyledons. Abstr. XV Int. Bot. Congr., Yokohama, p. 25.Google Scholar
  723. Drugg, W. S. 1962 Pollen morphology of the Lennoaceae. Amer. J. Bot. 49: 1027–1032.CrossRefGoogle Scholar
  724. Drury, D. G. &L. Watson. 1966 Taxonomic implications of a comparative anatomical study of Inuloideae-Compositae. Amer. J. Bot. 53: 828–833.CrossRefGoogle Scholar
  725. Dümmer, R. A. 1912. An enumeration of the Bruniaceae. J. Bot. Supp.Google Scholar
  726. Dunbar, A. 1975 On pollen of Campanulaceae and related families with special reference to the surface ultrastructure: 2. Campanulaceae subfam. Cyphioideae and subfam. Lobelioideae; Goodeniaceae; Sphenocleaceae. Bot. Not. 128: 102–118.Google Scholar
  727. —. 1978 Pollen morphology and taxonomic position of the genusPentaphragma Wall. (Pentaphragmataceae). Grana 17: 141–147.Google Scholar
  728. — &H.-G. Wallentinus. 1976 On pollen of Campanulaceae, III. A numerical taxonomic investigation. Bot. Not. 139: 69–72.Google Scholar
  729. Duncan, T. &C. S. Keener. 1991 A classification of the Ranunculaceae with special reference to the Western Hemisphere. Phytologia 70: 24–27.Google Scholar
  730. Duyjes, B. E. E. 1993 Coriariaceae. Fl. Males., 1,11: 385–391.Google Scholar
  731. —. 1996. Hernandiaceae. Fl. Males., 1,12: 737–761.Google Scholar
  732. Eames, A. J. 1929 The role of flower anatomy in the determination of angiosperm phylogeny. Proc. IV Int. Congr. Plant Sci. 1: 423–427.Google Scholar
  733. —. 1961. Morphology of the angiosperms. McGraw-Hill, New York.Google Scholar
  734. Eastop, V. F. 1973. Deductions from the present day host plants of aphids and related insects. Pp. 157–178in H. F. van Emden (ed.), Insect/plant relationships. Wiley & Sons, New York.Google Scholar
  735. Eckardt, T. 1976 Classical morphological features of centrospermous families. Pl. Syst. & Evol. 126: 5–25.CrossRefGoogle Scholar
  736. Ehdaie, M. &S. D. Russell. 1985 Megagametophyte development ofNandina domestica and its taxonomic implications. Phytomorphology 34: 1–225.Google Scholar
  737. Ehrendorfer, F. 1965. Evolution and karyotype differentiation in a family of flowering plants: Dipsacaceae. Pp. 2: 399–407in S. J. Geerts (ed.), Genetics today. Pergamon Press, New York.Google Scholar
  738. —. 1976a Chromosome numbers and differentiation of centrospermous families. Pl. Syst. & Evol. 126: 27–30.CrossRefGoogle Scholar
  739. —. 1976b Closing remarks: Systematics and evolution of centrospermous families. Pl. Syst. & Evol. 126: 99–106.CrossRefGoogle Scholar
  740. -. 1988. Affinities of the African dendroflora: Suggestions from karyoand chemosystematics. Pp. 105–127in P. Goldblatt & P. P. Lowry II (eds.), Modern systematic studies in African botany: Proceedings of the Eleventh Plenary Meeting of the Association for the Taxonomic Study of the Flora of Tropical Africa, Missouri Botanical Garden, St. Louis, June 10–14,1985. Monogr. Syst. Bot., 25. Missouri Bot. Gard., St. Louis.Google Scholar
  741. —,W. Morawitz &J. Dawe. 1984 The neotropical angiosperm families Brunelliaceae and Caryocaraceae: First karyosystematical data and affinities.pl. Syst. & Evol. 145: 183–191.CrossRefGoogle Scholar
  742. Ehrlich, P. R. &P. H. Raven. 1964 Butterflies and plants: A study in coevolution. Evolution 18: 586–608.CrossRefGoogle Scholar
  743. Eichler, A. W. 1875, 1878. Blüten diagramme. 2 vols. Leipzig.Google Scholar
  744. Eklund, H., E. M. Früs &K. R. Pedersen. 1997 Chloranthaceous floral structures from the Late Cretaceous of Sweden. Pl. Syst. & Evol. 207: 13–42.CrossRefGoogle Scholar
  745. Eldenäs, P., A. A. Anderberg &M. Källersjö. 1998 Molecular phylogenetics of the tribe Inuleaes.str. (Asteraceae), based on ITS sequences of nuclear ribosomal DNA. Pl. Syst. & Evol. 210: 159–173.CrossRefGoogle Scholar
  746. —,M. Källersjö &A. A. Anderberg. 1999 Phylogenetic placement and circumscription of tribes Inuleae s.str. And Plucheeae (Asteraceae): Evidence from sequences of chloroplast genendhF. Molec. Phylogenet. & Evol. 13: 50–58.CrossRefGoogle Scholar
  747. El-Gazzar, A. 1981 Chromosome numbers and rust susceptibility as taxonomic criteria in Rosaceae. Pl. Syst. & Evol. 137: 23–38.CrossRefGoogle Scholar
  748. — &M. A. El-Fiki. 1977 The main subdivisions of Leguminosae. Bot. Not. 129: 371–375.Google Scholar
  749. Elias, T. S. 1971a The genera of Fagaceae in the southeastern United States. J. Arnold Arbor. 52: 159–195.Google Scholar
  750. —. 1971b The genera of Myricaceae in southeastern United States. J. Arnold Arbor. 52: 305–318.Google Scholar
  751. -. 1981. Mimosoideae. Pp. 143–168in R. M. Polhill & P. H. Raven (eds.), Advances in legume systematics: Proceedings of the International Legume Conference, Kew, 24–29 July 1978. Royal Botanic Gardens, Kew.Google Scholar
  752. Eliasson, U. H. 1988 Floral morphology and taxonomic relations among the genera of Amaranthaceae in the New World and the Hawaiian Islands. J. Linn. Soc., Bot. 96: 235–283.Google Scholar
  753. Emden, H. F. van (ed.). 1973. Insect/plant relationships. Wiley & Sons, New York.Google Scholar
  754. Emmel, T. C. &J. F. Emmel. 1973. The butterflies of southern California. Sci. Ser. 26. Nat. Hist. Mus. Los Angeles Co., Los Angeles.Google Scholar
  755. Endo, Y. &H. Ohashi. 1998 The features of cotyledon areoles in Leguminosae and their systematic utility. Amer. J. Bot. 85: 753–759.CrossRefGoogle Scholar
  756. Endress, M. E. 1997 Key characters at the interface of the apocynacs and the asclepiads. Amer. J. Bot. 84(6): 189–190 (abstract).Google Scholar
  757. — &V. A. Albert. 1995 A morphological cladistic study of Apocynaceae: Trends in character evolution within a broadened familial circumscription. Amer. J. Bot. 82(6): 127 (abstract).Google Scholar
  758. — &V. Bittrich. 1993. Molluginaceae. Pp. 410–426in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  759. — &P. V. Bruyns. 2000 A revised classification of the Apocynaceae s.l. Bot. Rev. (Lancaster) 66: 1–56.Google Scholar
  760. —,M. Hesse, S. Nilsson, A. Guggisberg &J.-P. Zhu. 1990 The systematic position of the Holarrheninae (Apocynaceae). Pl. Syst. & Evol. 171: 157–185.CrossRefGoogle Scholar
  761. -,B. Sennbled, S. Nilsson, L. C. Neyrel, M. W. Chase, S. Huymans, E. Grafström & B. Bremer. 1996. A phylogenetic analysis of Apocynaceaes.str. and some related taxa in Gentianales: A multidisciplinary approach. Pp. 59–102in E. Robbrecht, C. Puff & E. Smets (eds.), Second International Rubiaceae Conference proceedings. Opera botanica Belgica. Vol. 7. National Botanic Garden of Belgium, Meise.Google Scholar
  762. Endress, P. K. 1968 Untersuchungen über den phylogenetischen Anschluss der Betulaceen an die Hamamelidaceen. Verh. Schweiz. Naturf. Ges. 1968: 113–114.Google Scholar
  763. —. 1969 Gesichtspunkte zur systematischen Stellung der Eupteleaceen (Magnoliales). Ber. Schweiz. Bot. Ges. 79: 229–278.Google Scholar
  764. —. 1970 Die Infloreszenzen der apetalen Hamamelidaceen, ihre grundsätzliche morphologische und systematische Bedeutung. Bot. Jahrb. Syst. 90: 1–54.Google Scholar
  765. —. 1972 Zur vergleichenden Entwicklungsmorphologie, Embryologie und Systematik bei Laurales. Bot. Jahrb. Syst. 92: 331–428.Google Scholar
  766. —. 1973 Arils and aril-like structures in woody Ranales. New Phytol. 72: 1159–1171.CrossRefGoogle Scholar
  767. —. 1977 Über Blutenbau und Verwandtschaft der Eupomatiaceae und Himantandraceae (Magnoliales). Ber. Deutsch. Bot. Ges. 90: 83–103.Google Scholar
  768. —. 1980a Floral structure and relationships ofHortonia (Monimiaceae). Pl. Syst. & Evol. 133: 199–221.CrossRefGoogle Scholar
  769. —. 1980b The reproductive structures and systematic position of the Austrobaileyaceae. Bot. Jahrb. Syst.101: 393–433.Google Scholar
  770. —. 1986 Floral structure, systematics, and phylogeny in Trochodendrales. Ann. Missouri Bot. Gard. 73: 297–324.CrossRefGoogle Scholar
  771. —. 1987 The Chloranthaceae: Reproductive structures and phylogenetic position. Bot. Jahrb. Syst. 109: 153–226.Google Scholar
  772. —. 1989a A suprageneric taxonomic classification of the Hamamelidaceae. Taxon 38: 371–376.CrossRefGoogle Scholar
  773. —. 1989b Aspects of evolutionary differentiation of the Hamamelidaceae and the Lower Hamamelididae. Pl. Syst. & Evol. 162: 193–211.CrossRefGoogle Scholar
  774. —. 1989c. Phylogenetic relationships in the Hamamelidoideae. Pp. 2: 227–248in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  775. —. 1990 Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Mem. New York Bot. Gard. 55: 5–34.Google Scholar
  776. —. 1992 Protogynous flowers in Monimiaceae. Pl. Syst. & Evol. 181: 227–232.CrossRefGoogle Scholar
  777. —. 1993a. Austrobaileyaceae. Pp. 138–140in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  778. —. 1993b. Cercidiphyllaceae. Pp. 250–252in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  779. —. 1993c. Eupomatiaceae. Pp. 296–298in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  780. —. 1993d. Eupteleaceae. Pp. 299–301in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  781. —. 1933e. Hamamelidaceae. Pp. 322–331in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  782. —1993f. Himantandraceae. Pp. 338–341in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  783. —. 1993g. Trochodendraceae. Pp. 599–602in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  784. —. 1994a Shapes, sizes and evolutionary trends in stamens of Magnoliidae. Bot. Jahrb. Syst. 115: 429–460.Google Scholar
  785. —. 1994b. Diversity and evolutionary biology of tropical flowers. Cambridge Univ. Press, Cambridge, England.Google Scholar
  786. —. 1994c Floral structure and evolution of primitive angiosperms: Recent advances. Pl. Syst. & Evol. 192: 79–97.CrossRefGoogle Scholar
  787. —. 1995. Floral structure and evolution in Ranunculanae.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9:47-61. Springer-Verlag, Vienna.Google Scholar
  788. —. 1997a Relationships between floral organization, architecture, and pollination mode inDillenia (Dilleniaceae). Pl. Syst. & Evol. 206: 99–118.CrossRefGoogle Scholar
  789. —. 1997b. Evolutionary biology of flowers: Prospects for the next century. Pp. 99–119in K. Iwatsuki & P. H. Raven (eds.), Evolution and diversification of land plants. Springer-Verlag, Tokyo, New York.Google Scholar
  790. — &R. Honegger. 1980 The pollen of the Austrobaileyaceae and its phylogenetic significance. Grana 19: 177–182.Google Scholar
  791. — &L. D. Hufford. 1989 The diversity of stamen structures and dehiscence patterns among Magnoliidae. J. Linn. Soc., Bot. 100: 45–85.Google Scholar
  792. — &A. Igersheim. 1997a Patterns of angiospermy in basal angiosperms. Amer. J. Bot. 84(6): 190 (abstract).Google Scholar
  793. ——. 1997b Gynoecium diversity and systematics of the Laurales. J. Linn. Soc., Bot. 125: 93–168.CrossRefGoogle Scholar
  794. ——. 1999 Gynoecium diversity and systematics of the basal eudicots. J. Linn. Soc., Bot. 130: 305–393.CrossRefGoogle Scholar
  795. — &F. B. Sampson. 1983 Floral structure and relationships of the Trimeniaceae (Laurales). J. Arnold Arbor. 64: 447–473.Google Scholar
  796. — &S. Stumpf. 1991 The diversity of stamen structures in “Lower” Rosidae (Rosales, Fabales, Proteales, Sapindales). J. Linn. Soc., Bot. 107: 217–293.Google Scholar
  797. Engel, T. &W. Barthlott. 1988 Micromorphology of epicuticular waxes in centrosperms. Pl. Syst. & Evol. 161: 71–85.CrossRefGoogle Scholar
  798. Engell, K. 1987 Embryology and taxonomical position ofRetzia capensis (Retziaceae). Nord. J. Bot. 7: 117–124.Google Scholar
  799. Engler, A. (ed.). 1900–1953. Das Pflanzenreich. W. Engelmann, Leipzig.Google Scholar
  800. — &K. Prantl. 1924. Die natürlichen Pflanzenfamilien. Ed. 2. W. Engelmann, Leipzig.Google Scholar
  801. Erbar, C. 1988. Early developmental patterns in flowers and their value for systematics. Pp. 7–23in P. Leins, S. C. Tucker & P. K. Endress (eds.), Aspects of floral development. J. Cramer, Berlin.Google Scholar
  802. —. 1991 Sympetaly: A systematic character? Bot. Jahrb. Syst. 112: 417–451.Google Scholar
  803. —. 1992 Floral development of two species ofStylidium (Stylidiaceae) and some remarks on the systematic position of the family Stylidiaceae. Canad. J. Bot. 70: 258–271.CrossRefGoogle Scholar
  804. —. 1993 Studies on the floral development and pollen presentation inAcicarpha tribuloides with a discussion of the systematic position of the family Calyceraceae. Bot. Jahrb. Syst. 115: 325–350.Google Scholar
  805. —. 1994 Contributions to the affinities ofAdoxa from the viewpoint of floral development. Bot. Jahrb. Syst. 116: 259–282.Google Scholar
  806. —. 1995 On the floral development ofSphenoclea zeylanica (Sphenocleaceae, Campanulales): SEM-investigations on herbarium material. Bot. Jahrb. Syst. 117: 469–483.Google Scholar
  807. —. 1997 Fieberklee und Seekanne: Enzian odor Aster-verwandt? Zur Blütenentwicklung und systematischen Stellung der Menyanthaceae. Bot. Jahrb. Syst. 119: 115–135.Google Scholar
  808. — &P. Leins. 1988a Studien zur Blütenentwicklungs und Pollenprasentation beiBrunonia australis Smith (Brunoniaceae). Bot. Jahrb. Syst. 110: 263–282.Google Scholar
  809. ——. 1988b Blütenentwicklungs-geschichtliche Studien anAralia undHedera (Araliaceae). Flora 180: 391–406.Google Scholar
  810. ——. 1989 On the early floral development and the mechanisms of secondary pollen presentation inCampanula, Josiane andLobelia. Bot. Jahrb. Syst. 111: 29–55.Google Scholar
  811. ——. 1994. Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms, I. The relationships between flowers of Magnoliidae and Alismatidae.In P. K. Endress & E. M. Friis (eds.), Early evolution of flowers. Pl. Syst. & Evol., Suppl. 8: 193–208. Springer-Verlag, Vienna.Google Scholar
  812. ——. 1995 Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales complex. Flora 190: 323–338.Google Scholar
  813. ——. 1996a. The formation of corolla tubes in Rubiaceae and presumably related families. Pp. 103–112in Second International Rubiaceae Conference proceedings. Opera botanica Belgica. Vol. 7. National Botanic Garden of Belgium, Meise.Google Scholar
  814. ——. 1996b An analysis of the early floral development ofPittosporum tobira (Thunb.) Aiton and some remarks on the systematic position of the family Pittosporaceae. Feddes Repert. 106: 463–473.Google Scholar
  815. ——. 1996c Distribution of the character states “Early Sympetaly” and “Late Sympetaly” within the “Sympetalae Tetracyclicae” and presumably allied groups. Bot. Acta 109: 427–440.Google Scholar
  816. ——. 1997 Studies on the early floral development in Cleomoideae (Capparaceae) with emphasis on the androecial development. Pl. Syst. & Evol. 206: 119–132.CrossRefGoogle Scholar
  817. Erdtman, G. 1944 The systematic position of the genusDiclidanthera Mart. Bot. Not. 1944: 80–84.Google Scholar
  818. —. 1945 Pollen morphology and plant taxonomy, IV. Labiatae, Verbenaceae, and Avicenniaceae. Svensk Bot. Tidskr. 39: 279–285.Google Scholar
  819. —. 1946 Pollen morphology and plant taxonomy, VII. Notes on various families. Svensk Bot. Tidskr. 40: 77–84.Google Scholar
  820. —. 1948 Pollen morphology and plant taxonomy, VIII. Didiereaceae. Bull. Mus. Hist. Nat. (Paris), ser. 2, 20: 387–394.Google Scholar
  821. —. 1952. Pollen morphology and plant taxonomy. Angiosperms. Almqvist & Wiksell, Stockholm.Google Scholar
  822. —. 1954a Pollen morphology and plant taxonomy in some African plants. Grana Palynol. 1: 1–8.Google Scholar
  823. —. 1954b Pollen morphology and plant taxonomy. Bot. Not. 2: 65–81.Google Scholar
  824. —. 1958 A note on the pollen morphology in the Ancistrocladaceae and Dioncophyllaceae. Veroff. Geobot. Inst. Rübel Zürich 33: 47–49.Google Scholar
  825. —. 1960 Pollen walls and angiosperm phylogeny. Bot. Not. 113: 41–45.Google Scholar
  826. —,P. Leins, R. Melville &C. R. Metcalfe. 1969 On the relationships ofEmblingia. J. Linn. Soc., Bot. 62: 169–186.Google Scholar
  827. Erickson, R. 1958. Triggerplants. P. Brokensha, Perth, Australia.Google Scholar
  828. Eriksson, L.T. &M. J. Donoghue. 1997 Phylogenetic relationships ofSambucus andAdoxa (Adoxaceae) based on nuclear ribosomal ITS sequences and preliminary morphological data. Syst. Bot. 22: 555–573.CrossRefGoogle Scholar
  829. —— &M. S. Hibbs. 1998 Phylogenetic analysis ofPotentilla using DNA sequences of nuclear ribosomal internal transcribed spacers (ITS), and implications for the classification of Rosoideae (Rosaceae). Pl. Syst. & Evol. 211: 155–179.CrossRefGoogle Scholar
  830. Eriksson, T. 1991 The systematic position of theBlepharispermum group (Asteraceae, Heliantheae). Taxon 40: 33–39.CrossRefGoogle Scholar
  831. Ernst, W. R. 1962 The genera of Papaveraceae and Fumariaceae in the southeastern United States. J. Arnold Arbor. 43: 315–343.Google Scholar
  832. —. 1963a The genera of Capparaceae and Moringaceae in the southeastern United States. J. Arnold Arbor. 44: 81–95.Google Scholar
  833. —. 1963b The genera of Hamamelidaceae and Platanaceae in the southeastern United States. J. Arnold Arbor. 44: 193–210.Google Scholar
  834. —. 1964 The genera of Berberidaceae, Lardizabalaceae, and Menispermaceae in the southeastern United States. J. Arnold Arbor. 45: 1–35.Google Scholar
  835. —. 1967 Floral morphology and systematics ofPlatystemon and its alliesHesperomecon andMeconella (Papaveraceae: Platystemonoideae). Univ. Kansas Sci. Bull. 47: 125–70.Google Scholar
  836. Ertter, B. 2000 Floristic surprises in North America north of Mexico. Ann. Missouri Bot. Gard. 87: 81–109.CrossRefGoogle Scholar
  837. Ettlinger, M. G. 1987. Systematic distribution and biochemical properties of glucosinolates (mustard oil glucosides). Abstr. XIV Int. Bot. Congr., Berlin, 5-26-1.Google Scholar
  838. — &A. Kjaer. 1968 Sulfur compounds in plants. Recent Adv. Phytochem. 1: 59–144.Google Scholar
  839. Evans, F. J. &C. J. Soper. 1978 The tigliane, daphnane, and ingenane diterpenes, their chemistry, distribution and biological activities: A review. Lloydia 41: 193–233.PubMedGoogle Scholar
  840. Evans, R. C. &C. S. Campbell. 2000a A multigene tree of the Rosales. Amer. J. Bot. 87(6): 125 (abstract).Google Scholar
  841. ——. 2000b The polyploid origin of a large clade: Nuclear Granule-Bound Starch Synthase (GBSSI or waxy) gene sequences support a spiraeoid ancestry of the Maloideae (Rosaceae). Amer. J. Bot. 87(6): 125–126 (abstract).Google Scholar
  842. — &T. A. Dickinson. 1997 Phylogenetic relationships in the Rosaceae: A total evidence approach. Amer. J. Bot. 84(6): 190–191 (abstract).Google Scholar
  843. ——. 1999a Floral ontogeny and morphology in subfamily Amygdaloideae T. & G. (Rosaceae). Int. J. Pl. Sci. 160: 955–979.CrossRefGoogle Scholar
  844. ——. 1999b Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int. J. Pl. Sci. 160: 981–1012.CrossRefGoogle Scholar
  845. Exell, A. W. &C. A. Stace. 1966 Revision of the Combretaceae. Bol. Soc. Brot., ser. 2, 40: 5–25.Google Scholar
  846. ——. 1972. Patterns of distribution in the Combretaceae. Pp. 307–323in D. H. Valentine (ed.), Taxonomy, phytogeography and evolution. Academic Press, London.Google Scholar
  847. Eyde, R. H. 1963 Morphological and paleobotanical studies of the Nyssaceae, I. A survey of the modern species and their fruits. J. Arnold Arbor. 44: 1–54.Google Scholar
  848. —. 1964 Inferior ovary and generic affinities ofGarrya. Amer. J. Bot. 51: 1083–1092.CrossRefGoogle Scholar
  849. —. 1966a Systematic anatomy of the flower ofCorokia. Amer. J. Bot. 53: 833–847.CrossRefGoogle Scholar
  850. —. 1966b The Nyssaceae in the southeastern United States. J. Arnold Arbor. 47: 117–125.Google Scholar
  851. —. 1967 The peculiar gynoecial vasculature of Cornaceae and its systematic significance. Phytomorphology 17: 172–182.Google Scholar
  852. —. 1968 Flowers, fruits, and phylogeny of Alangiaceae. J. Arnold Arbor. 49: 167–192.Google Scholar
  853. —. 1972 Pollen ofAlangium: Toward a more satisfactory synthesis. Taxon 21: 471–477.CrossRefGoogle Scholar
  854. —. 1976 The bases of angiosperm phylogeny: Floral anatomy. Ann. Missouri Bot. Gard. 62: 521–537.CrossRefGoogle Scholar
  855. —. 1988 ComprehendingCornus: Puzzles and progress in the systematics of the dogwoods. Bot. Rev. (Lancaster) 54: 233–351.Google Scholar
  856. —. 1997 Fossil record and ecology ofNyssa (Cornaceae). Bot. Rev. (Lancaster) 63: 97–123.Google Scholar
  857. — &X. Qiuyun. 1990 Fossil mastixioid (Cornaceae) alive in eastern Asia. Amer. J. Bot. 77: 689–692.CrossRefGoogle Scholar
  858. — &C. C. Tseng. 1971 What is the primitive floral structure of Araliaceae? J. Arnold Arbor. 52: 205–239.Google Scholar
  859. —,A. Bartlett &E. S. Barghoorn. 1969 Fossil record ofAlangium. Bull. Torrey Bot. Club 96: 288–314.CrossRefGoogle Scholar
  860. Fagerlind, F. 1945 Bau der Floralen Organe bei der GattungLangsdorffla. Svensk Bot. Tidskr. 39: 197–210.Google Scholar
  861. —. 1946 Gynäceummorphologie, Embryologie und systematische Stellung der GattungErythropalum. Svensk Bot. Tidskr. 40: 9–14.Google Scholar
  862. —. 1947 Gynöceummorphologische und embryologische Studien in der Familie Olacaceae. Bot. Not. 1947: 207–230.Google Scholar
  863. —. 1948 Beiträge zur Kenntnis der Gynöceum-morphologie und Phylogenie der SantalalesFamilien. Svensk Bot. Tidskr. 42: 195–229.Google Scholar
  864. Fairbrothers, D. E. 1977 Perspectives in plant serotaxonomy. Ann. Missouri Bot. Gard. 64: 147–160.CrossRefGoogle Scholar
  865. — &F. P. Petersen. 1983. Serological investigation of the Annoniflorae (Magnoliiflorae, Magnoliidae). Pp. 301–310in U. Jensen & D. E. Fairbrothers (eds.), Proteins and nucleic acids in plant systematics. Springer-Verlag, New York.Google Scholar
  866. —,T. J. Mabry, R. L. Scogin &B. L. Turner. 1976 The bases of angiosperm phylogeny: Chemotaxonomy. Ann. Missouri Bot. Gard. 62: 765–800.CrossRefGoogle Scholar
  867. Fallen, M. E. 1986 Floral structure in the Apocynaceae: Morphological, functional, and evolutionary aspects. Bot. Jahrb. Syst. 106: 245–286.Google Scholar
  868. -. 1987. Aspects of the evolution and systematics of the Apocynaceae. Abstr. XIV Int. Bot. Congr., Berlin, 5-41-6.Google Scholar
  869. Fassett, N.C. 1951Callitriche in the New World. Rhodora 53: 137–155,161-182,185-194,209-222.Google Scholar
  870. —. 1953 A monograph ofCabomba. Castanea 18: 1116–1128.Google Scholar
  871. Fay, M. F. &M. W. Chase. 1996 Molecular phylogeny of Ochnaceae and related families. Amer. J. Bot. 83(6): 155 (abstract).Google Scholar
  872. —,G. T. Prance &M. W. Chase. 1997a “Dendronology”: A molecular approach to monogeneric families of uncertain taxonomic affinities. Amer. J. Bot. 84(6): 191 (abstract).Google Scholar
  873. —,S. M. Swensen &M. W. Chase. 1997b Taxonomic affinities ofMedusagyne oppositifolia (Medusagynaceae). Kew Bull. 52: 111–120.CrossRefGoogle Scholar
  874. —,D. Bayer, W. S. Alverson, A. Y. de Bruijn &M. W. Chase. 1998 PlastidrbcL sequence data indicate a close affinity betweenDiegodendron andBixa. Taxon 47: 43–50.CrossRefGoogle Scholar
  875. Fehrenbach, S. &W. Barthlott. 1988 Mikromorpholgie der Epicuticular-Wachse der Rosaless.l. und deren systematische Gliederung. Bot. Jahrb. Syst. 109: 407–428.Google Scholar
  876. Felsenstein, J. 1978 Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401–410.CrossRefGoogle Scholar
  877. Ferguson, D. K. 1989. A survey of the Liquidambaroideae (Hamamelidaceae) with a view to elucidating its fossil record. Pp. 1:249-272in P. R. Crane and & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  878. —. 1998 The contribution of micromorphology to the taxonomy and fossil record of the Myricaceae. Taxon 47: 333–335.CrossRefGoogle Scholar
  879. Ferguson, D. M. 1999 Phylogenetic analysis and relationships in Hydrophyllaceae based onndhF sequence data. Syst. Bot. 23: 253–268.CrossRefGoogle Scholar
  880. Ferguson, I. K. 1965 The genera of Valerianaceae and Dipsacaceae in the southeastern United States. J. Arnold Arbor. 46: 218–231.Google Scholar
  881. —. 1977 Cornaceae. World Pollen and Spore Flora 6: 1–34.Google Scholar
  882. —. 1985 The pollen morphology of Moringaceae. Kew Bull. 40: 25–34.CrossRefGoogle Scholar
  883. — &J. J. Skvarla. 1988 Pollen morphology of the tribe Swartzieae (subfamily Papilionoideae: Leguminosae), 1. Introduction and all genera excludingAldina andSwartzia. Amer. J. Bot. 75: 1884–1897.CrossRefGoogle Scholar
  884. —,B. D. Schrire &R. Shepperson. 1994. Pollen morphology of the tribe Sophoreae and relationships between subfamilies Caesalpinioideae and Papilionoideae. Pp. 53–96in I. K. Ferguson & S. C. Tucker (eds.), Advances in legume systematics. Part 6. Structural botany. Royal Botanic Gardens, Kew.Google Scholar
  885. Fernando, E. S. &C. J. Quinn. 1995 Picramniaceae, a new family, and a recircumscription of Simaroubaceae. Taxon 44: 177–181.CrossRefGoogle Scholar
  886. —,P. A. Gadek, D. M. Crayn &C. J. Quinn. 1993 Rosid affinities of Surianaceae: Molecular evidence. Molec. Phylogenet. & Evol. 2: 344–350.CrossRefGoogle Scholar
  887. —— &C. J. Quinn. 1995 Simaroubaceae, an artificial construct: Evidence fromrbcL sequence variation. Amer. J. Bot. 82: 92–103.CrossRefGoogle Scholar
  888. Feuer, S. 1981 Pollen morphology and relationships of Misodendraceae (Santalales). Nord. J. Bot. 1: 731–734.Google Scholar
  889. —. 1986 Pollen morphology and evolution in the Persoonioideae, Sphalmioideae, and Carnarvonioideae (Proteaceae). Pollen & Spores 28: 123–155.Google Scholar
  890. —. 1990 Pollen aperture evolution among the subfamilies Persoonioideae, Sphalmioideae, and Carnarvonioideae (Proteaceae). Amer. J. Bot. 77: 783–794.CrossRefGoogle Scholar
  891. —. 1991 Pollen morphology and the systematic relationships ofTicodendron incognitum. Ann. Missouri Bot. Gard. 78: 143–151.CrossRefGoogle Scholar
  892. Fields, P. F. 1996 ATrochodendron infructescence from the 15 Ma Succor Creek flora in Oregon: A geographic and possibly temporal range extension. Amer. J. Bot. 83(6): 110 (abstract).Google Scholar
  893. Fikenscher, L. H., R. Hegnauer &H. W. L. Ruijgrok. 1969 Iridoide Pflanzenstoffe (Pseudoinkikane) als systematische Merkmale. Pharm. Weekblad 104: 561–566.Google Scholar
  894. Fineran, B. A. 1991 Root hemi-parasitism in the Santalales. Bot. Jahrb. Syst. 113: 277–308.Google Scholar
  895. Fisel, K. J. &F. Weberling. 1990 Untersuchungen zur Morphologie und Ontogenie der Bluten von 7b-varia pendula Ruiz et Pavon undTovaria diffusa (Macfad.) Fawcett et Rendle. Bot. Jahrb. Syst. 111: 365–387.Google Scholar
  896. Fisher, M. J. 1928 The morphology and anatomy of the flowers of the Salicaceae. Amer. J. Bot. 15: 307–326, 372–394.CrossRefGoogle Scholar
  897. Florence, J. 1985 Sertum polynesicum, I.Plakothira Florence (Loasaceae), genre nouveau des Îles Marquises. Adansonia 3: 239–245 (Ser. 4).Google Scholar
  898. Flores, E. M. &M. F. Moseley. 1990 Anatomy and aspects of development of the staminate inflorescences and florets of seven species ofAllocasuarina (Casuarinaceae). Amer. J. Bot. 77: 795–808.CrossRefGoogle Scholar
  899. Foreman, D. B. 1987 Notes on the wood anatomy ofIdiospermum australiense (Idiospermaceae). Muelleria 6: 329–333.Google Scholar
  900. Forero, E. 1983. Connaraceae. Fl. Neotrop. Monogr. 36. New York Bot. Gard., Bronx.Google Scholar
  901. Forman, L. L. 1966 Generic delimitation in the Castaneoideae. Kew Bull. 18: 421–426.CrossRefGoogle Scholar
  902. —. 1986 Menispermaceae. Fl. Males. 10: 157–253.Google Scholar
  903. —,P. E. Brandham, M. M. Harley &T. J. Lawrence. 1989Beiselia mexicana (Burseraceae) and its affinities. Kew Bull. 44: 1–31.CrossRefGoogle Scholar
  904. Foster, A. S. 1961 The floral morphology and relationships ofKingdonia uniflora. J. Arnold Arbor. 42: 397–415.Google Scholar
  905. —. 1963 The morphology and relationships ofCircaeaster. J. Arnold Arbor. 44: 299–327.Google Scholar
  906. Freeman, C. E. &R. Scogin. 1999 Potential utility of chloroplasttrnL (UAA) gene intron sequences for inferring phylogeny in Scrophulariaceae. Aliso 18: 141–159.Google Scholar
  907. Freudenstein, J. V. 1997 Molecular evidence for relationships and character transformation within Pyroloideae (Ericaceae). Amer. J. Bot. 84(6): 195 (abstract).Google Scholar
  908. —. 1998 Paraphyly, ancestors, and classification: A response to Sosef and Brummitt. Taxon 47: 95–104.CrossRefGoogle Scholar
  909. —. 1999 Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. Syst. Bot. 24: 398–408.CrossRefGoogle Scholar
  910. Friis, E. M. 1985Actinocalyx gen. nov., sympetalous angiosperm flowers from the Upper Cretaceous of southern Sweden. Rev. Paleobot. Palynol. 45: 171–183.CrossRefGoogle Scholar
  911. —. 1989 Palaeobotany. Progr. Bot. 50: 312–326.Google Scholar
  912. — &P. R. Crane. 1989. Reproductive structures of Cretaceous Hamamelidae. Pp. 1: 155–174in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  913. — &W. L. Crepet. 1987. Time of appearance of floral features. Pp. 145–179in E. M. Friis, W. G. Chaloner & P. R. Crane (eds.), The origins of angiosperms and their biological consequences. Cambridge Univ. Press, Cambridge, England.Google Scholar
  914. — &P. K. Endress. 1990 Origin and evolution of angiosperm flowers. Advances Bot. Res. 17: 99–162.Google Scholar
  915. ——. 1996 Flower evolution. Progr. Bot. 57: 253–280.Google Scholar
  916. —,W. L. Crepet &K. R. Pedersen. 1986 Floral evidence for Cretaceous chloranthoid angiosperms. Nature 320: 163–164.CrossRefGoogle Scholar
  917. —,W. G. Chaloner &P. R. Crane (eds.) 1987. The origins of angiosperms and their biological consequences. Cambridge Univ. Press, New York.Google Scholar
  918. —,W. L. Crepet &K. R. Pedersen. 1988 Reproductive structures of Cretaceous Platanaceae. Biol. Skr. 31: 1–55.Google Scholar
  919. ———. 1991. Stamen diversity andin situ pollen of Cretaceous angiosperms. Pp. 197–224in S. Blackmore & S. H. Barnes (eds.), Pollen and spores: Patterns of diversification. Clarendon Press, Oxford.Google Scholar
  920. —,K. R. Pedersen &P. R. Crane. 1995Appomattoxia ancistrophora gen. et sp. nov., anew Early Cretaceous plant with similarities toCircaeaster and extant Magnoliideae. Amer. J. Bot. 82: 933–943.CrossRefGoogle Scholar
  921. ———. 1999 Early angiosperm diversification: The diversity of pollen associated with angiosperm reproductive structures in early Cretaceous floras from Portugal. Ann. Missouri Bot. Gard. 86: 259–296.CrossRefGoogle Scholar
  922. Friis, I. 1987 A reconsideration ofPittosporum in Africa and Arabia. Kew Bull. 42: 319–335.CrossRefGoogle Scholar
  923. —. 1989a. The Urticaceae: A systematic review. Pp. 2: 285–308in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.Google Scholar
  924. —. 1989b A synopsis of the Buxaceae in Africa south of the Sahara. Kew Bull. 44: 293–315.CrossRefGoogle Scholar
  925. —. 1993a. Barbeyaceae. Pp. 141–143in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  926. —. 1993b. Urticaceae. Pp. 612–630in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  927. Fritsch, P. 1996 Isozyme analysis of intercontinental disjuncts withinStyrax (Styracaceae): Implications for the Madrean-Tethyan hypothesis. Amer. J. Bot. 83: 342–355.CrossRefGoogle Scholar
  928. —. 1999 Phylogeny ofStyrax based on morphological characters, with implications for biogeography and infrageneric classification. Syst. Bot. 24: 356–378.CrossRefGoogle Scholar
  929. Frohne, D. &J. John. 1978 The Primulales: Serological contributions to the problem of their systematic position. Biochem. Syst. Ecol. 6: 315–322.CrossRefGoogle Scholar
  930. Fryns-Claessens, E. &W. Van Cotthem. 1973 A new classification of the ontogenetic types of stomata. Bot. Rev. (Lancaster) 39: 71–138.Google Scholar
  931. Fryxell, P. F. &J. C. La Duke. 1994 Phylogenetic relationships in the Malvaceae: A morphological study. Amer. J. Bot. 81(6): 156 (abstract).Google Scholar
  932. Fu, D.-Z. 1990 Phylogenetic considerations on the subfamily Thalictroideae (Ranunculaceae). Cathaya 2: 181–190.Google Scholar
  933. Fuller, D. Q. 1995 Systematics and leaf architecture of the Gunneraceae. Amer. J. Bot. 82(6): 130–131 (abstract).Google Scholar
  934. Funk, V. 1995 The Liabeae (Compositae): Phylogeny and biogeography. Amer. J. Bot. 82(6): 131 (abstract).Google Scholar
  935. Gadek, P. A., C. J. Quinn, J. E. Rodman, K. G. Karol, E. Conti, R. A. Price &E. S. Fernando. 1992 Affinities of the Australian endemic Akaniaceae: New evidence fromrbcL sequences. Austral. Syst. Bot. 5: 717–724.CrossRefGoogle Scholar
  936. —,E. S. Fernando, C. J. Quinn, S. B. Hoot, T. Terrazas, M. C. Sheahan &M. W. Chase. 1996 Sapindales: Molecular delimitation and infraordinal groups. Amer. J. Bot. 83: 802–811.CrossRefGoogle Scholar
  937. Gandgadhara, M. &J. A. Inamdar. 1977 Trichomes and stomata, and their taxonomic significance in the Urticales. Pl. Syst. & Evol. 127: 121–137.CrossRefGoogle Scholar
  938. Gandolfo, M. A., K. C. Nixon &W. L. Crepet. 1998aTylerianthus corssmanensis gen. et sp. nov. (aff. Hydrangeaceae) from the Upper Cretaceous of New Jersey. Amer. J. Bot. 85: 376–386.CrossRefGoogle Scholar
  939. ———. 1998b A new fossil flower from the Turonian of New Jersey:Dressiantha bicarpellata gen. et sp. nov. (Capparales). Amer. J. Bot. 85: 964–974.CrossRefGoogle Scholar
  940. Gardner, R. O.1978 Systematic notes on the Alseuosmiaceae. Blumea 24: 138–142.Google Scholar
  941. Garg, M. 1981 Pollen morphology and systematic position ofCoriaria. Phytomorphology 30: 5–10.Google Scholar
  942. Garratt, G. A. 1933a Systematic anatomy of the woods of the Myristicaceae. Trop. Woods 35: 6–18.Google Scholar
  943. —. 1933b Bearing of wood anatomy on the relationships of the Myristicaceae. Trop. Woods 36: 20–44.Google Scholar
  944. —. 1934 Systematic anatomy of the woods of the Monimiaceae. Trop. Woods 39: 18–44.Google Scholar
  945. Gastony, G. J. &D. E. Soltis. 1977 Chromosome studies ofParnassia andLepuropetalon (Saxifragaceae) from the eastern United States: A new base number forParnassia. Rhodora 79: 573–578.Google Scholar
  946. Gelderen, D. M. van, P. C. de Jong &H. J. Oterdoom. 1994. Maples of the world. Timber Press, Portland, OR.Google Scholar
  947. Gengler, K. M. 1997 ITS phylogeny and biogeography of Malesherbiaceae, an endemic of the South American Pacific coastal desert. Amer. J. Bot. 84(6): 196–197 (abstract).Google Scholar
  948. Gentry, A. H. 1976 Relationships of the Madagascar Bignoniaceae: A striking case of convergent evolution. Pl. Syst. & Evol. 126: 255–266.CrossRefGoogle Scholar
  949. — &A. S. Tomb. 1980 Taxonomic implications of Bignoniaceae palynology. Ann. Missouri Bot. Gard. 66: 756–777.CrossRefGoogle Scholar
  950. Gentry, H. S. 1958 The natural history of jojoba (Simmondsia chinensis) and its cultural aspects. Econ. Bot. 12: 261–295.Google Scholar
  951. George, A. S. 1982 Gyrostemonaceae. Fl. Austral. 8: 362–379.Google Scholar
  952. Gershenzon, J. &T. J. Mabry. 1983 Secondary metabolites and the higher classification of angiosperms. Nord. J. Bot. 3: 5–34.Google Scholar
  953. Gerstberger, P. 1987. Serological investigations of glucosinolate-producing plant families. Abstr. XIV Int. Bot. Congr., Berlin, 5-26-4.Google Scholar
  954. Giannasi, D. E. 1978 Generic relationships in the Ulmaceae based on flavonoid chemistry. Taxon 27: 331–334.CrossRefGoogle Scholar
  955. —. 1986 Phytochemical aspects of phylogeny in Hamamelidae. Ann. Missouri Bot. Gard. 73: 417–437.CrossRefGoogle Scholar
  956. —. 1988. Flavonoids and evolution in the dicotyledons. Pp. 479–504in J. B. Harbome (ed.), The flavonoids: Advances in research since 1980. Chapman & Hall, New York.Google Scholar
  957. — &K. J. Niklas. 1977 Pakaraimoideae, Dipterocarpaceae of the Western Hemisphere, IV. Phytochemistry. Taxon 26: 380–385.CrossRefGoogle Scholar
  958. —,G. Zurawski, G. Learn &M. T. Clegg. 1992 Evolutionary relationships of the Caryophyllidae based on comparativerbcL sequences. Syst. Bot. 17: 1–15.CrossRefGoogle Scholar
  959. Gibbs, R. D. 1945 Comparative chemistry as an aid to the solution of problems in systematic botany. Trans. Roy. Soc. Canad., 3rd ser., Sect. 5, 39: 71–103.Google Scholar
  960. —. 1954 Comparative chemistry and phylogeny of flowering plants. Proc. & Trans. Roy. Soc. Canad., ser. 3, 485: 1–47.Google Scholar
  961. —. 1974. Chemotaxonomy of flowering plants. 4 vols. McGill-Queen’s Univ. Press, Montreal, London.Google Scholar
  962. Gibson, A. C. 1977a Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). Biotropica 5: 29–65.CrossRefGoogle Scholar
  963. —. 1977b Vegetative anatomy ofMaihuenia (Cactaceae) with some theoretical discussions of ontogenetic changes in xylem cell types. Bull. Torrey Bot. Club 104: 35–48.CrossRefGoogle Scholar
  964. —. 1978 Rayless secondary xylem ofHalophytum. Bull. Torrey Bot. Club 105: 39–44.CrossRefGoogle Scholar
  965. —. 1979 Anatomy ofKoeberlinia andCanotia revisited. Madroño 26: 1–12.Google Scholar
  966. —. 1980 Wood anatomy ofThornea, including some comparisons with other Hypericaceae. Int. Assoc. Wood Anat. News Bull., n.s., 1: 87–92.Google Scholar
  967. —. 1994. Vascular tissues. Pp. 45–74in H.-D. Behnke & T. J. Mabry (eds.), Caryophyllales: Evolution and systematics. Springer-Verlag, Berlin.Google Scholar
  968. — &K. E. Horak. 1978 Systematic anatomy and phylogeny of Mexican columnar cacti. Ann. Missouri Bot. Gard. 65: 999–1057.CrossRefGoogle Scholar
  969. Giebel, K. P. &W. C. Dickison. 1976 Wood anatomy of Clethraceae. J. Elisha Mitchell Sci. Soc. 92: 17–26.Google Scholar
  970. Gilbert, M. G. 1994 The relationships of the Euphorbieae (Euphorbiaceae). Ann. Missouri Bot. Gard. 81: 283–288.CrossRefGoogle Scholar
  971. Gilg, E. 1908 Die systematische Stellung der GattungHoplestigma und einiger anderer zweifelhafter Gattungen. Beibl. 93, Bot. Jahrb. Syst. 40: 76–84.Google Scholar
  972. Gilmartin, A. J. 1980 Variations within populations and classification, II. Patterns of variation within Asclepiadaceae and Umbelliferae. Taxon 29: 199–212.CrossRefGoogle Scholar
  973. Godfrey, R. K. &A. F. Clewell. 1965 PolygamodioeciousLeitneria floridana (Leitneriaceae). Sida 2: 172–173.Google Scholar
  974. Goldberg, A. C. &Nelson S. 1989Haptanthus, a new dicotyledonous genus from Honduras. Syst. Bot. 14: 16–19.CrossRefGoogle Scholar
  975. Goldblatt, P. 1976a Cytotaxonomic studies in the tribe Quillajeae (Rosaceae). Ann. Missouri Bot. Gard. 63: 200–206.CrossRefGoogle Scholar
  976. —. 1976b Chromosome number inGomortega keule. Ann. Missouri Bot. Gard. 63: 207–208.CrossRefGoogle Scholar
  977. —. 1976c Chromosome number and its significance inBatis maritima (Bataceae). J. Arnold Arbor. 57: 526–530.Google Scholar
  978. —. 1979a Chromosome number in two cytologically unknown New World families, Tovariaceae and Vivianiaceae. Ann. Missouri Bot. Gard. 65: 776–777.CrossRefGoogle Scholar
  979. —. 1979b Chromosome number in two primitive dicots,Xymalos monospora (Monimiaceae) andPiptocalyx moorei (Trimeniaceae). Ann. Missouri Bot. Gard. 66: 898–899.CrossRefGoogle Scholar
  980. —. 1981 Chromosome cytology of Bruniaceae. Ann. Missouri Bot. Gard. 68: 546–550.CrossRefGoogle Scholar
  981. —. 1986 Chromosome number in Sarcolaenaceae. Ann. Missouri Bot. Gard. 73: 828–829.CrossRefGoogle Scholar
  982. — &P. K. Endress. 1977 Cytology and evolution in Hamamelidaceae. J. Arnold Arbor. 58: 67–71.Google Scholar
  983. — &A. H. Gentry. 1979 Cytology of Bignoniaceae. Bot. Not. 132: 475–482.Google Scholar
  984. — &R. C. Keating. 1977 Chromosome cytology, pollen structure and relationship ofRetzia capensis. Ann. Missouri Bot. Gard. 63: 321–325.CrossRefGoogle Scholar
  985. —,J. W. Nowicke, T. J. Mabry &H.-D. Behnke. 1976 Gyrostemonaceae: Status and affinity. Bot. Not. 129: 210–206.Google Scholar
  986. Gomez-Laurito, J. &L. D. Gomez P. 1989Ticodendron: A new tree from Central America. Ann. Missouri Bot. Gard. 76: 1148–1151.CrossRefGoogle Scholar
  987. ——. 1991 Ticodendraceae: A new family of flowering plants. Ann. Missouri Bot. Gard. 78: 87–88.CrossRefGoogle Scholar
  988. Gonzalez, F. 1997 Phylogenetic relationships of the subfamily Aristolochioideae (Aristolochiaceae). Amer. J. Bot. 84(6): 198 (abstract).Google Scholar
  989. Gornall, R. J. 1989 Anatomical evidence and the taxonomic position ofDarmera (Saxifragaceae). J. Linn. Soc., Bot. 100: 173–182.CrossRefGoogle Scholar
  990. —,B. A. Böhm &R. Dahlgren. 1979 The distribution of flavonoids in the angiosperms. Bot. Not. 132: 1–30.Google Scholar
  991. Gottlieb, O. R., M. A. C. Kaplan, K. Kubitzki &J. R. T. Barros. 1989 Chemical dichotomies in the magnolialean complex. Nord. J. Bot. 8: 437–444.Google Scholar
  992. ———. 1993a A suggested role of galloyl esters in the evolution of dicotyledons. Taxon 42: 539–552.CrossRefGoogle Scholar
  993. —— &D. H. T. Zocher. 1993b A chemosystematic overview of Magnoliidae, Ranunculidae, Caryophyllidae and Hamamelidae. Pp. 20–31in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  994. ——,A. M. M. S. Dan, D. H. T. Zocher &M. R. M. B. Borin. 1994. Micromolecular clues for evolution of the Leguminosae. Pp. 107–128in J. I. Sprent & D. McKey (eds.), Advances in legume systematics. Part 5. The nitrogen factor. Royal Botanic Gardens, Kew.Google Scholar
  995. Gottwald, H. &N. Parameswaran. 1966 Das sekundäre Xylem der Familie Dipterocarpaceae, anatomische Untersuchungen zur Taxonomie und Phylogenie. Bot. Jahrb. Syst. 85: 410–508.Google Scholar
  996. ——. 1967 Beiträge zur Anatomie und Systematik der Quiinaceae. Bot. Jahrb. Syst. 87: 361–381.Google Scholar
  997. ——. 1968 Das sekundäre Xylem und die systematische Stellung der Ancistrocladaceae und Dioncophyllaceae. Bot. Jahrb. Syst. 88: 49–69.Google Scholar
  998. Govaerts, R. &D. G. Frodin. 1998. World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanic Gardens, Kew.Google Scholar
  999. Graham, A. 1977 New records ofPelliceria (Theaceae/Pelliceriaceae) in the Tertiary of the Caribbean. Biotropica 9: 48–52.CrossRefGoogle Scholar
  1000. Graham, S. A. 1964a The genera of Lythraceae in the southeastern United States. J. Arnold Arbor. 45: 235–250.Google Scholar
  1001. —. 1964b The Elaeagnaceae in the southeastern United States. J. Arnold Arbor. 45: 274–278.Google Scholar
  1002. —. 1966. The genera of Araliaceae in the southeastern United States. J. Arnold Arbor. 47: 126–136.Google Scholar
  1003. —. 1975 Taxonomy of the Lythraceae in the southeastern United States. Sida 6: 80–103.Google Scholar
  1004. —. 1985 Alzateaceae, a new family of Myrtales in the American tropics. Ann. Missouri Bot. Gard. 71: 757–779.CrossRefGoogle Scholar
  1005. —. 1995 Two new species inCuphea (Lythraceae), and a note on Alzateaceae. Novon 5: 272–277.CrossRefGoogle Scholar
  1006. — &J. E. Averett. 1984 Flavonoids of Alzateaceae (Myrtales). Ann. Missouri Bot. Gard. 71: 855–857.CrossRefGoogle Scholar
  1007. — &C. E. Wood. 1965 The genera of Polygonaceae in the southeastern United States. J. Arnold Arbor. 46: 91–121.Google Scholar
  1008. —,J. V. Crisci &P. C. Hoch. 1993a Cladistic analysis of the Lythraceaesensu lato based on morphological characters. J. Linn. Soc., Bot. 113: 1–33.CrossRefGoogle Scholar
  1009. —,K. Oginuma, P. H. Raven &H. Tobe. 1993b Chromosome numbers inSonneratia andDuabanga (Lythraceaes.l.) and their systematic significance. Taxon 42: 35–41.CrossRefGoogle Scholar
  1010. —,R. F. Thorne &J. L. Reveal. 1998 Validation of subfamily names in Lythraceae. Taxon 47: 435–436.CrossRefGoogle Scholar
  1011. Grant, V. 1950a The pollination ofCalycanthus occidentalis. Amer. J. Bot. 37: 294–297.CrossRefGoogle Scholar
  1012. —. 1950b The protection of the ovules in flowering plants. Evolution 4: 179–201.CrossRefGoogle Scholar
  1013. —. 1959. Natural history of thePhlox family: Systematic botany. Martinus Nijhoff, The Hague, Netherlands.Google Scholar
  1014. —. 1998 Primary classification and phylogeny of the Polemoniaceae, with comments on molecular cladistics. Amer. J. Bot. 85: 741–752.CrossRefGoogle Scholar
  1015. — &K. A. Grant. 1965. Flower pollination in thePhlox family. Columbia Univ. Press, New York.Google Scholar
  1016. Grau, J. &H. Hopf. 1985 Das Endosperm der Compositae. Bot. Jahrb. Syst. 107: 251–268.Google Scholar
  1017. Gregor, H. J. 1989 Aspects of the fossil record and phylogeny of the family Rutaceae (Zanthoxyleae, Toddalioideae). Pl. Syst. & Evol. 162: 251–265.CrossRefGoogle Scholar
  1018. Gregory, M. &P. Baas. 1989 A survey of mucilage cells in vegetative organs of the dicotyledons. Israel J. Bot. 38: 125–174.Google Scholar
  1019. Gregory, W. C. 1941 Phylogenetic and cytological studies in the Ranunculaceae. Trans. Amer. Philos. Soc., II, 31: 442–521.Google Scholar
  1020. Greuter, W., T. McNeil &Other members of Editorial Committee. 1994 International code of botanical nomenclature (Tokyo code). Regnum Veg. 131: 1–389.Google Scholar
  1021. Grudzinskaya, I. A. 1988 On the taxonomy of Cannabaceae. Bot. Zhurn. (Moscow & Leningrad) 73: 589–593 (in Russian; summary in English).Google Scholar
  1022. Grund, C. &U. Jensen. 1979 Systematic relationships of the Saxifragales revealed by serological characteristics of seed proteins. Pl. Syst. & Evol. 137: 1–22.CrossRefGoogle Scholar
  1023. Grundeil, R. 1933 Sur Anatomie vonMyrothamnus flabellifolia Welw. Symb. Bot. Upsal. 2: 1–17.Google Scholar
  1024. Guedes, M. &C. Sartre. 1981 Morphology of the gynoecium and systematic position of the Ochnaceae. J. Linn. Soc., Bot. 82: 121–138.Google Scholar
  1025. Guinet, P. & I. K. Ferguson. 1989. Structure, evolution and biology of pollen in Leguminosae. Pp. 77–103in C. H. Stirton & J. L. Zarucchi (eds.), Advances in legume biology: Proceedings of the Second International Legume Conference, St. Louis, Missouri, 23–27 June 1986. Monogr. Syst. Bot., 29. Missouri Bot. Gard., St. Louis.Google Scholar
  1026. Gunn, C. R. &C. A. Ritchie. 1988. Identification of disseminules listed in the Federal Noxious Weed Act. Techn. Bull. U.S.D.A. 1719. U.S. Dept. of Agriculture, Washington, DC.Google Scholar
  1027. Gunter, L. E., G. Kochert &D. E. Giannasi. 1994 Phylogenetic relationship of the Juglandaceae. Pl. Syst. & Evol. 192: 11–29.CrossRefGoogle Scholar
  1028. Gustafsson, M. H. G. 1996. Phylogenetic hypotheses for Asteraceae relationships. Pp. 9–19in D. J. N. Hind & H. J. Beentje (eds.), Proceedings of the International Compositae Conference, Kew, 1994. Vol. 1. Compositae: Systematics. Royal Botanic Gardens, Kew.Google Scholar
  1029. — &K. Bremer. 1995 Morphology and phylogenetic interrelationships of the Asteraceae, Calyceraceae, Campanulaceae, Goodeniaceae, and related families (Asterales). Amer. J. Bot. 82: 250–265.CrossRefGoogle Scholar
  1030. —,A. Backlund &B. Bremer. 1996 Phylogeny of the Asteralessensu lato based onrbcL sequences with particular reference to the Goodeniaceae. Pl. Syst. & Evol. 199: 217–242.CrossRefGoogle Scholar
  1031. —,E. Grafstrom &S. Nilsson. 1997 Pollen morphology of the Goodeniaceae and comparisons with related families. Grana 36: 185–207.Google Scholar
  1032. —,A. S.-R. Pepper, T. F. Stuessy &V. A. Albert. 1998 Molecular phylogeny and biogeography of Barnadesioideae (Asteraceae). Amer. J. Bot. 85: 133–134 (abstract).Google Scholar
  1033. Gutzwiller, M.-A. 1961 Die phylogenetische Stellung vonSuriana maritima L. Bot. Jahrb. Syst. 81: 1–49.Google Scholar
  1034. Haberle, R. C. &T. J. Ayers. 1997 Systematics ofPseudonemacladus (Nemacladaceae). Amer. J. Bot. 84(6): 200 (abstract).Google Scholar
  1035. Häffner, E. &F. H. Hellwig. 1999 Phytogeny of the tribe Cardueae (Compositae) with emphasis on the subtribe Carduinae: An analysis based on ITS sequence data. Willdenowia 29: 27–39.Google Scholar
  1036. Hakki, M. I. 1985 Studies on West Indian plants. 3. On floral morphology, anatomy and relationship ofPicrodendron baccatum (L.) Krug & Urban (Euphorbiaceae). Bot. Jahrb. Syst. 107: 379–394.Google Scholar
  1037. Hall, J. C. &K. J. Sytsma. 2000 Solving the riddle of California cuisine: Phylogenetic relationships of capers and mustards. Amer. J. Bot. 87(6): 132 (abstract).Google Scholar
  1038. Hall, J. W. 1952 The comparative anatomy and phytogeny of the Betulaceae. Bot. Gaz. 113: 235–270.CrossRefGoogle Scholar
  1039. Hallier, H. 1901 Über die Verwandtschaftsverhältnisse der Tubifloren und Ebenalen, den polyphyletischen Ursprung der Sympetalen und Apetalen und die Anordnung der Angiospermen überhaupt. Abh. Naturwiss. Verein Hamburg 16(2,2): 3–112.Google Scholar
  1040. —. 1903 Vorläufiger Entwurf des natürlichen (phylogenetischen) Systems der Blütenpflanzen. Ber. Deutsch. Bot. Ges. 23: 85–91.Google Scholar
  1041. —. 1905 Provisional scheme of the natural (phylogenetic) system of flowering plants. New Phytol. 4: 151–162.CrossRefGoogle Scholar
  1042. —. 1908 ÜberJuliania, eine Terebinthaceen-gattung mit Cupula, und die wahren Stammeltern der Kätzchenblütler. Neue Beiträge zur Stammesgeschichte der Dicotyledonen. Beih. Bot. Centralbl. 23 (II): 81–265.Google Scholar
  1043. —. 1911 Über Phanerogamen von unsicherer odor unrichtiger Stellung. Meded. Rijks-Herb. 1910(1): 1–41.Google Scholar
  1044. —. 1912 L’Origine et le système phylétique des angiosperms exposés à l’aide de leur arbre généalogique. Arch. Néerl. Sci. Exact. Nat. IIIB. 1: 146–234.Google Scholar
  1045. —. 1923a Beiträge zur Kenntnis der Linaceae (D.C. 1819) Dumort. Beih. Bot. Centralbl. 39(2): 1–178.Google Scholar
  1046. —. 1923b Über die Lennoeen, eine zu Linné’s Bicornes verirrte Sippe der Borraginaceen. Beih. Bot. Centralbl. 40(2): 1–19.Google Scholar
  1047. Ham, R. C. H. J. van. 1994. Phylogenetic implications of chloroplast DNA variation in the Crassulaceae.Google Scholar
  1048. — &H. t’Hart. 1998 Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. Amer. J. Bot. 85: 123–134.CrossRefGoogle Scholar
  1049. Ham, R. W. J. M.van der. 1989 New observations on the pollen ofCtenolophon Oliver (Ctenolophonaceae), with remarks on the evolutionary history of the genus. Rev. Paleobot. Palynol. 59: 153–160.CrossRefGoogle Scholar
  1050. Hammel, B. &W. G. Burger. 1991 Neither oak nor alder, but nearly: The history of Ticodendraceae. Ann. Missouri Bot. Gard. 78: 89–95.CrossRefGoogle Scholar
  1051. — &M. A. Zamora. 1990Nyssa talamanca (Cornaceae), an addition to the remnant Laurasian Tertiary flora of southern Central America. Brittonia 42: 165–170.CrossRefGoogle Scholar
  1052. ——. 1993Ruptiliocarpon (Lepidobotryaceae): A new arborescent genus and tropical American link to Africa, with a reconsideration of the family. Novon 3: 408–417.CrossRefGoogle Scholar
  1053. Hammond, H. D. 1955 Systematic serological studies in Ranunculaceae. Serol. Mus. Bull. 14: 1–3.Google Scholar
  1054. Handel-Mazzetti, H. 1932 Rhoipteleaceae, eine neue Familie der Monochlamydeen. Repert. Spec. Nov. Regni Veg. 30: 75–80.Google Scholar
  1055. Hansen, B. 1972 The genusBalanophora J. R. & G. Forster: A taxonomic monograph. Dansk. Bot. Ark. 28(1): 1–188.Google Scholar
  1056. —. 1975 Balanophoraceae. Fl. Males. 7: 783–805.Google Scholar
  1057. -. 1980. Balanophoraceae. Fl. Neotrop. Monogr. 23. New York Bot. Gard., Bronx.Google Scholar
  1058. —. 1986 The Balanophoraceae of continental Africa. Bot. Jahrb. Syst. 106: 359–377.Google Scholar
  1059. — &K. Engell. 1978 Inflorescences in Balanophoroideae, Lophophytoideae, and Scybalioideae (Balanophoraceae). Svensk Bot. Tidskr. 72: 177–187.Google Scholar
  1060. Hansen, H. V. 1991 SEM—Studies and general comments on pollen in tribe Mutiseae (Compositae)sensu Cabrera. Nord. J. Bot. 10: 607–623.Google Scholar
  1061. —. 1992 Studies in the Calyceraceae with a discussion of its relationship to Compositae. Nord. J. Bot. 12: 63–75.Google Scholar
  1062. —. 1997 Studies in the Goodeniaceae and the Brunoniaceae with a discussion of their relationship to Asteraceae and Calyceraceae. Nord. J. Bot. 17: 495–510.Google Scholar
  1063. Han-Xing, L. &S. C. Tucker. 1995 Floral ontogeny ofZippelia begoniaefolia and its familial affinity: Saururaceae or Piperaceae? Amer. J. Bot. 82: 681–689.CrossRefGoogle Scholar
  1064. Haraldson, K. 1978 Anatomy and taxonomy in Polygonaceae subfam. Polygonoideae Meisn. emend. Jaretsky. Symb. Bot. Upsal. 22(2): 1–95.Google Scholar
  1065. Harborne, J. B. 1966 Caffeic acid ester distribution in higher plants. Z. Naturf. 21b: 604–605.Google Scholar
  1066. —. 1967 Comparative biochemistry of the flavonoids, IV. Correlations between chemistry, pollen morphology and systematics in the family Plumbaginaceae. Phytochemistry 6: 1415–1428.CrossRefGoogle Scholar
  1067. —. 1969 Occurrence of flavonol 5-methyl ethers in higher plants and their systematic significance. Phytochemistry 8: 419–423.CrossRefGoogle Scholar
  1068. —(ed.). 1988. The flavonoids: Advances in research since 1980. Chapman & Hall, New York.Google Scholar
  1069. — &B. L. Turner. 1984. Plant chemosystematics. Academic Press, London.Google Scholar
  1070. — &C. A. Williams. 1973 A chemotaxonomic survey of flavonoids and simple phenols in leaves of the Ericaceae. J. Linn. Soc., Bot. 66: 37–54.Google Scholar
  1071. Harden, G. J. &J. B. Williams. 2000 A revision ofDavidsonia (Cunoniaceae). Telopea 8: 413–428.Google Scholar
  1072. Hardin, J. W. 1957 A revision of the American Hippocastanaceae. Brittonia 9: 145–195.CrossRefGoogle Scholar
  1073. Haridasan, V. K. &P. K. Mukherjee. 1988 Seed surface features of some members of the Indian Campanulaceae. Phytomorphology 37: 277–285.Google Scholar
  1074. Harland, W. B., A. V. Cox, P. G. Llewellyn, C. A. G. Pickton, A. G. Smith &R. Walters. 1982. A geologic time scale. Cambridge Univ. Press, Cambridge, England.Google Scholar
  1075. Harley, M. M. 1986 Distinguishing pollen characters for the Sapotaceae. Canad. J. Bot. 64: 3091–3100.Google Scholar
  1076. —. 1991a The pollen morphology of the Sapotaceae. Kew Bull. 46: 379–491.CrossRefGoogle Scholar
  1077. —. 1991b. Pollen morphology of the Sapotaceae. Pp. 23–50in T. D. Pennington, The genera of Sapotaceae. Royal Botanic Gardens, Kew, & New York Bot. Gard., Bronx.Google Scholar
  1078. Harley, R. M. &T. Reynolds (eds.). 1992. Advances in labiate science. Royal Botanic Gardens, Kew.Google Scholar
  1079. Harris, D. J. 1999. Species Plantarum: Flora of the World. Part 1, Irvingiaceae. Australian Biological Resources Study, Canberra.Google Scholar
  1080. Hart, J. A. 1988 Rust fungi and host plant coevolution: Do primitive hosts harbor primitive parasites? Cladistics 4: 339–366.Google Scholar
  1081. Hartley, I. H. &K. Balkwill. 1990 A taxonomic account ofAgathelpis, Globulariopsis andGosela (Selaginaceae). S. African J. Bot. 50: 471–481.Google Scholar
  1082. Hartley, R. D. &P. J. Harris. 1981 Phenolic constituents of the cell walls of dicotyledons. Biochem. Syst. Ecol. 9: 189–203.CrossRefGoogle Scholar
  1083. Hartman, R. L. &B. E. Nelson. 1998. Taxonomic novelties from North America north of Mexico: A 20year vascular plant diversity baseline. Monogr. Syst. Bot., 67. Missouri Bot. Gard. Press, St. Louis.Google Scholar
  1084. Hartmann, H. E. K. 1993. Aizoaceae. Pp. 37–69in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  1085. Hartog, R. M. den &P. Baas. 1978 Epidermal characters of the Celastraceaesensu lato. Acta Bot. Neerl. 27(5/6): 355–388.Google Scholar
  1086. Harvey-Gibson, R. J. 1913 Observations on the morphology and anatomy of the genusMystropetalon. Trans. Linn. Soc. London 8: 143–154.Google Scholar
  1087. Haskins, M. L. &W. J. Hayden. 1987 Anatomy and affinities ofPenthorum. Amer. J. Bot. 74: 164–177.CrossRefGoogle Scholar
  1088. Hawkes, J. G. (ed.). 1968. Chemotaxonomy and serotaxonomy: Proceedings of a symposium held at the Botany Department, Birmingham University, 15–16 September, 1967. Academic Press, London, New York.Google Scholar
  1089. —,R. N. Lester &A. D. Skelding (eds.). 1979. The biology and taxonomy of the Solanaceae. Linn. Soc. London Sym. Ser., 7. Academic Press, London.Google Scholar
  1090. —,M. Nee, K. N. Lester, N. Estrada, W. G. D’Arcy, D. Symon &S. Dickerson (eds.). 1988. Solanaceae, III: Taxonomy, Chemistry, evolution. Royal Botanic Gardens, Kew, for the Linn. Soc. London.Google Scholar
  1091. Hayden, W. J. 1977 Comparative anatomy and systematics ofPicrodendron, genusincertae sedis. J. Arnold Arbor. 58: 257–279.Google Scholar
  1092. —. 1987. The identity of the genusNeowawraea (Euphorbiaceae). Brittonia 39: 268–277.CrossRefGoogle Scholar
  1093. —. 1994. Systematic anatomy of Euphorbiaceae subfamily Oldfieldioideae, I. Overview. Ann. Missouri Bot. Gard. 81: 180–202.CrossRefGoogle Scholar
  1094. — &D. S. Brandt. 1984. Wood anatomy and relationships ofNeowawraea (Euphorbiaceae). Syst. Bot. 9: 458–466.CrossRefGoogle Scholar
  1095. — &J. D. Lewandowski. 1997. Gynoecium structure inPenthorum. Amer. J. Bot. 84(6): 201 (abstract).Google Scholar
  1096. Hedberg, I. (ed.). 1979. Parasites as plant taxonomists: Proceedings of a symposium held in Uppsala 25–27 August 1978, in commemoration of Carolus Linnaeaus, Carl Peter Thunberg, Elias Fries. Symb. Bot. Upsal. 22(4).Google Scholar
  1097. Hedge, I. C. 1976. A systematic and geographical survey of the Old World Cruciferae. Pp. 1–45in J. G. Vaughan, A. J. MacLeod & B. M. G. Jones (eds.), The biology and chemistry of the Cruciferae. Academic Press, London.Google Scholar
  1098. —,A. Kjaer &O. Malver. 1980.Diptetygium— Cruciferae or Capparaceae? Notes Roy. Bot. Gard. Edinburgh 38: 247–250.Google Scholar
  1099. Hedrén, M., M. W. Chase &R. G. Olmstead. 1995. Relationships in the Acanthaceae and related families as suggested by cladistic analysis ofrbcL nucleotide sequences. Pl. Syst. & Evol. 194: 93–109.CrossRefGoogle Scholar
  1100. Heel, W. A. van. 1967. Anatomical and ontogenetic investigations on the morphology of the flowers and the fruit ofScyphostegia borneensis Stapf (Scyphostegiaceae). Blumea 15: 107–125.Google Scholar
  1101. —. 1979. Flowers and fruits in Flacourtiaceae, IV.Hydnocarpus spp.,Kiggelaria africana L.,Casearia spp.,Berberidopsis corallina Hook. f. Blumea 25: 513–529.Google Scholar
  1102. —. 1993. Floral ontogeny ofArchidendron lucyi (Mimosaceae), with remarks onAmherstia nobilis (Caesalpiniaceae). Bot. Jahrb. Syst. 114: 551–560.Google Scholar
  1103. Hegnauer, R. 1956. Chemotaxonomische Betrachtung der Leguminosae. Die Pharmazie 11: 2–16.Google Scholar
  1104. —. 1959. Die Verbreitung der Bläusaure bei den Cormophyten, 3. Mitteiling die Blausäurehaltigen Gattungen. Pharm. Weekbl. 94: 248–262.PubMedGoogle Scholar
  1105. —. 1960. Chemotaxonomische Betrachtungen, 10. Die systematische Bedeutung des Blausäuremerkmales. Sonder-Abdruck Pharm. Zentralhalle 99(6): 322–329.Google Scholar
  1106. —. 1962–1992. Chemotaxonomie der Pflanzen. Vols. 1–10. Birkhäuser, Basel, Switzerland.Google Scholar
  1107. —. 1966. Aucubinartige glucoside: Über ihre Verbreitung und Bedeutung als systematisches Merkmal. Pharm. Acta Helv. 41: 577–587.PubMedGoogle Scholar
  1108. —. 1969. Chemical evidence for the classification of some plant taxa. Pp. 121–138in J. B. Harborne & T. Swain (eds.), Perspectives in phytochemistry: Proceedings of the Phytochemical Society symposium, Cambridge, April 1968. Academic Press, London, New York.Google Scholar
  1109. —. 1971. Pflanzenstoffe und Pflanzensystematik. Naturwissenschaften 58: 585–598.CrossRefGoogle Scholar
  1110. —. 1977. Cyanogenic compounds as systematic markers in Tracheophyta.In K. Kubitzki (ed.), Flowering plants: Evolution and classification of higher categories, Symposium, Hamburg, September 8–12,1976. Pl. Syst. & Evol., Suppl. 1: 191–210. Springer-Verlag, Vienna.Google Scholar
  1111. —. 1978a. The importance of essential oils in plant classification. Dragoco Rep. 10: 203–230.Google Scholar
  1112. —. 1978b. Phytochemie und Klassifikation der Umbelliferen, eine Neubewertung im Lichte der Seit 1972 Bekannt Geworden phytochemischen Tatsachen. Pp. 335–363in Les Ombellifères: Contributions pluridisciplinaires à la systématique. Missouri Botanic Garden, St. Louis.Google Scholar
  1113. —. 1988. Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochemistry 27: 2423–2427.CrossRefGoogle Scholar
  1114. —. 1989. Chemotaxonomie der Pflanzen 8. Nachträge zu Band 3 und Band 4 (Acanthaceae bis Lythraceae). Birkhauser-Verlag, Basel, Switzerland.Google Scholar
  1115. —. 1997. Phytochemistry and chemotaxonomy of Boraginaceae. Fl. Males., 1, 13: 52–58.Google Scholar
  1116. Heinricher, E. 1934. Zur Frage der Artbildung beiCytinus hypocistis nebst anderen Bemerkungen. Ber. Deutsch. Bot. Ges. 52(1): 48–53.Google Scholar
  1117. Hekking, W. H. A. 1988. Violaceae, 1.Rinorea andRinoreocarpus. Fl. Neotrop. Monogr. 46. New York Bot. Gard., Bronx.Google Scholar
  1118. Hennig, S., W. Barthlott, I. Meusel &I. Theisen. 1994. Mikromorpholgie der Epicuticularwachse und die Systematik der Magnoliidae, Ranunculidae und Hamamelididae. Trop. Subtrop. Pflanzenwelt 90: 1–60.Google Scholar
  1119. Henrickson, J. S. 1967. Pollen morphology of the Fouquieriaceae. Aliso 6: 137–160.Google Scholar
  1120. —. 1972. A taxonomic revision of the Fouquieriaceae. Aliso 7: 439–537.Google Scholar
  1121. —. 1973. Fouquieriaceae DC. World Pollen and Spore Flora 1: 1–12.Google Scholar
  1122. Heo, K. &H. Tobe. 1994. Embryology and relationships ofSuriana maritima L. (Surianaceae). J. Pl. Res. 107: 29–37.CrossRefGoogle Scholar
  1123. —,H. van der Werff &H. Tobe. 1998. Embryology and relationships of Lauraceae (Laurales). J. Linn. Soc., Bot. 126: 295–322.CrossRefGoogle Scholar
  1124. Herendeen, P. S. 1995. Phylogenetic relationships of the tribe Swartzieae. Pp. 123–132in M. D. Crisp & J. J. Doyle (eds.), Advances in legume systematics. Part 7. Phylogeny. Royal Botanic Gardens, Kew.Google Scholar
  1125. — &D. L. Dilcher (eds.) 1992. Advances in legume systematics. Part 4. The fossil record. Royal Botanic Gardens, Kew.Google Scholar
  1126. —,D. H. Les &D. L. Dilcher. 1990. FossilCeratophyllum (Ceratophyllaceae) from the Tertiary of North America. Amer. J. Bot. 77: 7–16.CrossRefGoogle Scholar
  1127. —,W. L. Crepet &D. L. Dilcher. 1992. The fossil history of the Leguminosae: Phylogenetic and biogeographic implications. Pp. 303–316in P. S. Herendeen & D. L. Dilcher (eds.), Advances in legume systematics. Part 4. The fossil record. Royal Botanic Gardens, Kew.Google Scholar
  1128. —— &K. C. Nixon. 1993.Chloranthus- like stamens from the Upper Cretaceous of New Jersey. Amer. J. Bot. 80: 865–871.CrossRefGoogle Scholar
  1129. ——. 1994. Fossil flowers and pollen of Lauraceae from the Upper Cretaceous of New Jersey. Pl. Syst. & Evol. 189: 29–40.CrossRefGoogle Scholar
  1130. —,E. A. Wheeler &P. Baas. 1999. Angiosperm wood evolution and the potential contribution of paleontological data. Bot. Rev. (Lancaster) 65: 278–300.Google Scholar
  1131. Hernandez-Castillo, G. R. &S. R. S. Cevallos-Ferriz. 1997. A permineralized plant with Haloragaceae affinity from the Upper Cretaceous of Sonora, Mexico. Amer. J. Bot. 84(6): 134 (abstract).Google Scholar
  1132. Hershkovitz, M. A. 1989. Phylogenetic studies in Centrospermae: A brief appraisal. Taxon 38: 602–610.CrossRefGoogle Scholar
  1133. —. 1993. Revised circumscriptions and subgeneric taxonomies ofCalandrinia andMontiopsis (Portulacaceae) with notes on phylogeny of the portulacaceous alliance. Ann. Missouri Bot. Gard. 80: 333–365.CrossRefGoogle Scholar
  1134. — &E. A. Zimmer. 1994. Ribosomal DNA phylogenetics of Portulacaceae and allied families. Amer. J. Bot. 81(6): 160–161 (abstract).Google Scholar
  1135. ——. 1997. On the evolutionary origins of the cacti. Taxon 46: 217–232.CrossRefGoogle Scholar
  1136. Hesse, M., W. Morawetz &F. Ehrendorfer. 1985. Pollen ultrastructure and systematic affinities ofAnaxagorea (Annonaceae). Pl. Syst. & Evol. 148: 253–285.CrossRefGoogle Scholar
  1137. Heubl, G. &A. Wistuba. 1997. A cytological study of the genusNepenthes (Nepenthaceae). Sendtnera 4: 169–174.Google Scholar
  1138. Heusden, E. C. H. van. 1992. Flowers of Annonaceae: Morphology, classification, and evolution. Blumea (Suppl.) 7: 1–218.Google Scholar
  1139. Heywood, V. H. (ed.). 1971. The biology and chemistry of the Umbelliferae. J. Linn. Soc., Bot., Suppl. 1. Academic Press, London.Google Scholar
  1140. —,J. B. Harborne &B. L. Turner (eds.). 1977. The biology and chemistry of the Compositae. 2 vols. Academic Press, New York.Google Scholar
  1141. D. M. Moore, I. B. K. Richardson &W. T. Stearn (eds.). 1978. Flowering plants of the world. Mayflower Books, New York.Google Scholar
  1142. Hibsch-Jetter, C. &D. E. Soltis. 1996. Phylogenetic analysis of “Saxifragales” based onnrDNA andcoDNA sequence data (18S,rbcL andmatK). Amer. J. Bot. 83(6): 163 (abstract).Google Scholar
  1143. —, — &T. D. Macfarlane. 1997. Phylogenetic analysis ofEremosyne pectinata (Saxifragaceaes.l.) based onrbcL sequence data. Pl. Syst. & Evol. 204: 225–232.CrossRefGoogle Scholar
  1144. Hickey, L. J. 1973. Classification of the architecture of dicotyledonous leaves. Amer. J. Bot. 60: 117–33.CrossRefGoogle Scholar
  1145. —. 1979. A revised classification of the architecture of dicotyledonous leaves. Pp. 1: 25–39in C. R. Metcalfe & I. Chalk (eds.), Anatomy of the dicotyledons. Ed. 2. Clarendon Press, Oxford.Google Scholar
  1146. — &D. W. Taylor. 1991. The leaf architecture ofTicodendron and the application of foliar characters in discerning its relationships. Ann. Missouri Bot. Gard. 78: 105–130.CrossRefGoogle Scholar
  1147. — & —. 1996. Origin of the angiosperm flower. Pp. 176–231in D. W. Taylor & L. J. Hickey (eds.), Flowering plant origin, evolution & phylogeny. Chapman & Hall, New York.CrossRefGoogle Scholar
  1148. — &J. A. Wolfe. 1976. The bases of angiosperm phylogeny: Vegetative morphology. Ann. Missouri Bot. Gard. 62: 538–539.CrossRefGoogle Scholar
  1149. Hiepko, P. 1979. A revision of Opiliaceae, I. Genera of the eastern Old World, excludingOpilia. Willdenowia 9: 13–56.Google Scholar
  1150. —. 1984. Opiliaceae. Fl. Males. 10: 31–52.Google Scholar
  1151. — (ed.). 1995. Ranunculaceae.In A. Engler & K. Prantl, Nat. Pflanzenfam., ed. 2,17, a, IV: 555 pp. Engelmann, Leipzig.Google Scholar
  1152. — &D. Lobreau-Callen. 1987. Pollen morphology and evolution of Opiliaceae (Santalales). Abstr. XIV Int. Bot. Congr., Berlin, 5-136–4.Google Scholar
  1153. Hileman, L. C., V. T Parker &M. C. Vasey. 1994. Preliminary generic relationships of the Arbuteae (Ericaceae) based on molecular sequence data. Amer. J. Bot. 81(6): 161 (abstract).Google Scholar
  1154. Hill, K. D. &L. A. S. Johnson. 1995. Systematic studies in the eucalypts, 7. A revision of the bloodwoods, genusCorymbia (Myrtaceae). Telopea 6: 185–506.Google Scholar
  1155. Hill, R. S. 1991. TertiaryNothofagus (Fagaceae) macrofossils from Tasmania and Antarctica and their bearing on the evolution of the genus. J. Linn. Soc., Bot. 105: 73–112.Google Scholar
  1156. —&G. J. Jordan. 1993. The evolutionary history ofNothofagus (Nothofagaceae). Austral. Syst. Bot. 6: 111–126.CrossRefGoogle Scholar
  1157. — &J. Read. 1991. A revised infrageneric classification ofNothofagus (Fagaceae). J. Linn. Soc., Bot. 105: 37–72.Google Scholar
  1158. Hils, M. H., W. C. Dickison, T. W. Lucansky &W. L. Stern. 1988. Comparative anatomy and systematics of woody Saxifragaceae:Tetracarpaea. Amer. J. Bot. 75: 1687–1700.CrossRefGoogle Scholar
  1159. Hilu, K. W., T. Borsch, J. Rohwer, C. Neinhuis, T. Slotta, B. Gemeinholzer, M. Wink &L. A. Alice. 2000. Insight into the evolution of angiosperms: Evidence frommatK sequences. Amer. J. Bot. 87(6): 133 (abstract).Google Scholar
  1160. Hind, D. J. N. & J. J. Beentje (eds.). 1996. Proceedings of the International Compositae Conference, Kew, 1994. Vol. 1. Compositae: Systetnatics. Royal Botanic Gardens, Kew.Google Scholar
  1161. Hjelmqvist, H. 1948. Studies on the floral morphology and phylogeny of the Amentiferae. Bot. Not., Suppl. 2: 1–171.Google Scholar
  1162. Hoc, P. S. &L. D. Bravo. 1984. Estudio palinológico sobre las especies presentes en Argentina deSpigelia, Strychnos,y Desfontainia (Loganiaceae). Kurtziana 17: 71–89.Google Scholar
  1163. Hoch, P. C., J. V. Crisci, H. Tobe &P. E. Berry. 1993. A cladistic analysis of the plant family Onagraceae. Syst. Bot. 18: 31–47.CrossRefGoogle Scholar
  1164. Hodges, S. A., H. E. Ballard Jr.,M. L. Arnold &M. W. Chase. 1995. Generic relationships in the Violaceae: Data from morphology, anatomy, chromosome numbers andrbcL sequences. Amer. J. Bot. 82(6): 136 (abstract).Google Scholar
  1165. Hofmann, U. 1977. Die Stellung vonStegnosperma innerhalb der Centrospermen. Ber. Deutsch. Bot. Ges. 90: 39–52.Google Scholar
  1166. —. 1994. Flower morphology and ontogeny. Pp. 123–166in H.-D. Behnke & T. J. Mabry (eds.), Caryophyllales: Evolution and systematics. Springer-Verlag, Berlin.Google Scholar
  1167. — &J. Gottmann. 1990.Marina L. undTriplostegia Wall. ex DC. im Vergleich mit Valerianaceae und Dipsacaceae. Bot. Jahrb. Syst. 111: 499–553.Google Scholar
  1168. Hohn, M. E. &W. G. Meinschein. 1976. Seed oil fatty acids: Evolutionary significance in the Nyssaceae and Cornaceae. Biochem. Syst. Ecol. 4: 193–199.CrossRefGoogle Scholar
  1169. Holub, M., J. Toman &V. Herout. 1987. The phylogenetic relationships of the Asteraceae and Apiaceae based on phytochemical characters. Biochem. Syst. Ecol. 15: 321–326.CrossRefGoogle Scholar
  1170. Hong, T., Z.-L. Ma &J.-S. Chen. 1987. Floral morphology ofPopulus lasiocarpa Oliv, and its phylo-genetic position inPopulus. Acta Bot. Sin. 29: 236–241.Google Scholar
  1171. Hoogland, R. D. 1952. A revision of the genusDillenia. Blumea 7: 1–145.Google Scholar
  1172. — &J. L. Reveal. 1993. Vascular plant family names in current use. Regnum Veg. 126: 15–60.Google Scholar
  1173. Hooren, A. M. N. van &H. P. Nooteboom. 1986a. Linaceae. Fl. Males. 10: 607–619.Google Scholar
  1174. —& —. 1986b. Ctenolophonaceae. Fl. Males. 10: 629–634.Google Scholar
  1175. Hoot, S. B. 1991. Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromorphology. Syst. Bot. 16: 741–755.CrossRefGoogle Scholar
  1176. —. 1995. Phylogeny of the Ranunculaceae based on preliminaryatpB, rbcL and18S nuclear ribosomal DNA sequence data.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 241–251. Springer-Verlag, Vienna.Google Scholar
  1177. — &P. R. Crane. 1995. Inter-familial relationships in the Ranunculidae based on molecular systematics.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 119–131. Springer-Verlag, Vienna.Google Scholar
  1178. — &A. A. Reznicek. 1994. Phylogenetic relationships inAnemone (Ranunculaceae) based on morphology and chloroplast DNA. Syst. Bot. 19: 169–200.CrossRefGoogle Scholar
  1179. —,A. Culham &P. R. Crane. 1995a. The utility ofatpB gene sequences in resolving phylogenetic relationships: Comparison withrbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann. Missouri Bot. Gard. 82: 194–207.CrossRefGoogle Scholar
  1180. —,—& —. 1995b. Phylogenetic relationships of the Lardizabalaceae and Sargentodoxaceae: Chloroplast and nuclear DNA sequence evidence.In U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9: 195–199. Springer-Verlag, Vienna.Google Scholar
  1181. —,P. S. Herendeen &P. R. Crane. 1995c. Phylogenetic relationships and floral morphology in the family Circaeasteraceae (Circaeaster andKingdonia). Amer. J. Bot. 82(6): 136 (abstract).Google Scholar
  1182. —,J. W. Kadereit, F. R. Blattner, K. B. Jork, A. E. Schwarzback &P. R. Crane 1997. Data congruence and phylogeny of the Papaveraceaes.l. based on four data sets:atpB andrbcL sequences,trnK restriction sites, and morphological characters. Syst. Bot. 22: 575–590.CrossRefGoogle Scholar
  1183. —,S. Magallon-Puebla &P. R. Crane. 1999. Phylogeny of basal eudicots based on three molecular data sets:atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Ann. Missouri Bot. Gard. 86: 1–32.CrossRefGoogle Scholar
  1184. Hotchkiss, A. T. 1958. Pollen and pollination in the Eupomatiaceae. Proc. Linn. Soc. N.S.W. 83: 86–91.Google Scholar
  1185. Hou, D. 1972. Germination, seedling, and chromosome number ofScyphostegia borneensis Stapf (Scyphostegiaceae). Blumea 20: 88–92.Google Scholar
  1186. —. 1984. Aristolochiaceae. Fl. Males. 10: 53–108.Google Scholar
  1187. —,K. Larsen &S. S. Larsen. 1996. Caesalpiniaceae. Fl. Males., I, 12: 409–730.Google Scholar
  1188. Hsiao, J.-Y. 1973. A numerical taxonomic study of the genusPlalanus based on morphological and phenolic characters. Amer. J. Bot. 60: 678–684.CrossRefGoogle Scholar
  1189. Hu, A. 1987. Studies on the morphology ofKingdonia uniflora Balf. f. et W. W. Sm. andCircaeaster agrestis Maxim. Abstr. XIV Int. Bot. Congr., Berlin, 5-162b-3.Google Scholar
  1190. Hu, H. H. 1934. Notulae systematicae ad florem sinesium V. [Toricelliaceae]. Bull. Fan Mem. Inst. Biol. 5: 305–318.Google Scholar
  1191. Hu, S.-Y. 1959. A monograph of the genusPaulownia. Quart. J. Taiwan Mus. 12: 1–54.Google Scholar
  1192. Hu, Z.-H. &L.-X. Tian. 1985. Studies on morphology ofKingdonia uniflora F. Balfour et W. W. Smith, III. The morphology and anatomy of flowers, fruits, and seeds. Acta Phytotax. Sin. 23: 170–178 (in Chinese; summary in English).Google Scholar