Two discrete fractional integral operators revisited



  1. [J]
    J. L. Journé,Calderón —Zygmund operators on product spaces, Rev. Mat. Iberoamericana1 (1985), 55–91.MathSciNetMATHGoogle Scholar
  2. [MSW]
    A. Magyar, E. M. Stein and S. Wainger,Discrete analogues in harmonic analysis: spherical averages, preprint.Google Scholar
  3. [O]
    D. Oberlin,Two discrete fractional integrals, Math. Res. Lett.8 (2001), 1–6.MathSciNetMATHGoogle Scholar
  4. [R]
    J. L. Rubio de Francia,A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana1 (1985), 1–14.MATHGoogle Scholar
  5. [SW1]
    E. M. Stein and S. Wainger,Discrete analogues of singular Radon transforms. Bull. Amer. Math. Soc.23 (1990), 537–544.CrossRefMathSciNetMATHGoogle Scholar
  6. [SW2]
    E. M. Stein and S. Wainger,Discrete analogues in harmonic analysis II: fractional integration, J. Analyse Math.80 (2000), 335–355.MathSciNetMATHCrossRefGoogle Scholar
  7. [V]
    I. M. Vinogradov,The Method of Trigonometric Sums in the Theory of Numbers, Interscience, London, 1954.Google Scholar
  8. [W]
    A. Walfisz,Gitterpunkte in mehrdimensionalen Kugeln, Polish Scientific Publishers, Warsaw, 1957.MATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2002

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations